FAQ #1: Will There Be A Cure For Spinal Cord Injury?

FAQ #1:  Will There Be A Cure for Spinal Cord Injury?
By Wise Young PhD MD, Rutgers University,
W. M. Keck Center for Collaborative Neuroscience
604 Allison Rd, Piscataway, NJ 08854-8082
First posted 22 December 2008

Will there be a cure for spinal cord injury?  This is the most frequently asked and often first question asked by people and families after spinal cord injury.  I answer yes to this question for the following reasons.

  • People and animals often recover substantially after “incomplete” spinal cord injury.  Animals can walk with only 5-10% of their axons [1].  A large majority (>90%) of people with even slight initial preservation of function at the lowest level of their spinal cord, i.e. anal sensation and sphincter control, recover ability to walk [2].  Examination of their spinal cords may indicate that they have only 10% of their spinal cord tracts remaining at the injury site.  The spinal cord is capable of tremendous plasticity.  Thus, depending on what the person has, regenerating and remyelinating even a small proportion of the axons in the spinal cord may be sufficient to restore substantial function to people with spinal cord injury.
  • The spinal cord can regenerate.  For over a century, scientists have reported that spinal cords of some animals and even mammals can regenerate under certain circumstances.  For example, lamprey [3], tadpoles [4], goldfish [5], and many other animals are able to regenerate their spinal cords.  For a long time, people thought that this was because these animals are evolutionarily primitive and that mammalian axons cannot regrow.  However, Aguayo, et al. [6-8] found that spinal axons can regrow in peripheral nerve but certain factors in the spinal cord inhibit growth [9].
  • Many therapies regenerate the spinal cords.  Over 100 individual therapies have been reported to stimulate axonal regeneration in the spinal cord. Please note that the following is by no means an exhaustive list of curative therapies of spinal cord injury.  I only cite representative recent publications supporting each therapy.  The point is that *many* therapies have been reported to regenerate the spinal cord.
    • Nogo and Nogo receptor blockers.  Nogo is a myelin-based protein that activates axonal receptors that act through rho and rho kinase to stop axonal growth.  Many ways of blocking Nogo or its receptors have been shown to increase regeneration:
      • Binding of Nogo with antibodies [10, 11] or soluble Nogo receptor protein [12]  stimulate regeneration.  The former is currently in clinical trial by Novartis.  The latter is being developed for clinical trial by Biogen.
      • Blocking Nogo receptor with a 66-amino acid fragment of Nogo [13].  The fragment apparently binds the nogo receptor and prevents further activation.
      • Blocking Lingo co-receptor also stimulates regeneration [14, 15].  .  Lingo is a co-receptor of the Nogo receptor.  This is being developed by Biogen.
      • Blocking rho kinase and rho (“rhok and rho”).  Rho kinase blockers stimulate regeneration in the spinal cord.  A modified version of a bacterial toxin that blocks rho, named Cethrin, has been reported to stimulate regeneration and functional recover in animals and in clinical trials  [23-27]
    • Chondroitinase.  The extracellular space contains glycoproteins that inhibit axonal growth.  These include chondroitin-6-sulfate proteoglycans (CSPG), which impedes axonal guidance and growth [28, 29].  Chondroitinase ABC is a bacterial enzyme that break down CSPG [30], allows regeneration [31, 32], and improves locomotor recovery [33].
    • Cyclic nucleotides.  Cyclic nucleotides convert neuronal growth cone responses from repulsion to attraction [34].  An increase in intracellular cAMP in axons will stimulate axons to grow and ignore growth inhibitors such as Nogo and CSPG [35, 36].   In zebrafish, where regeneration can occur but not of all neurons, cAMP application is helpful [37].  Several treatments are available to increase cAMP levels in neurons.  One is rolipram, a phosphodiesterase 4 (PDE4) inhibitor localized to the central nervous system.  Dibutyryl cAMP will enter the cells and directly increase cAMP.  The combination of Schwann cell transplant, rolipram, and dibutyryl-cAMP strongly stimulate regeneration [38, 39].
    • Combination Neurotrophins.  Several neurotrophins are known to stimulate regeneration in the spinal cord, even in the presence of growth inhibitors.  These include nerve growth factor (NGF), neurotrophin-3 (NT3), and glial-derived neurotrophic factor (GDNF).  Much evidence point to the importance of NT-3 [40-42] in combination with other factors [43-46].  BDNF may have undesirable effects [47].  A sustained source of these neurotrophins, however, is required for long-distance regeneration.   Fibroblast growth factor (FGF-2) [48] and FGF-1 [49] apparently improved regeneration.  This may be through stimulation of endogenous neural stem cells in the spinal cord [50].
    • Cellular Adhesion Molecules.  A number of cell adhesion molecules play a major role in axonal regeneration [51].  The most interesting one is L1, a member of the IgG superfamily of cell adhesion molecules, that bind to L1 expressed by other growing axons and stimulate the axons to grow in bundles, a process called fasciculation.  Increasing L1 expressing in the spinal cord stimulates regeneration [52].  Elimination of L1 reduces sensor fiber sprouting in mice [53] perhaps through manipulation of semaphorins [54].  Another regenerative CAM is N-CAM [55] but increasing CHL1 cellular adhesion may inhibit recovery [56].
    • Cell Transplants.  Many cell transplants have been reported to improve recovery after spinal cord injury
      • Olfactory Ensheathing Glia.  These cells are born in the nasal mucosa and migrate in the olfactory nerve to the olfactory bulb, facilitating growth and connection of olfactory axons.  The olfactory nerve is the only nerve in the body that continuously regenerates throughout adult life and its ability to do so is believe to be due to the presence of OEG cells.  These cells also express L1 and neurotrophins. Astrocytes do not respond to exposure to olfactory ensheathing glia with GFAP or CSPG secretion.  Transplantation of these cells improves recovery after spinal cord injury [57-69] and ventral root repair [70, 71], although one group suggests that Schwann cells may be better in a direct comparison [72, 73].
      • Umbilical cord blood mononuclear cells.  Several groups have reported the umbilical cord blood mononuclear cells, particularly CD34+ cells, stimulate regeneration and improve recovery in animals after spinal cord injury [74-79].  The mechanisms of action were not clear.   Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and other neurotrophic factors [80] and downregulated FAS [81]. Cord blood cells may even myelinated axons [82].  We recently found that cord blood mononuclear cells secrete neurotrophins and that lithium strongly boosts neurotrophin production by these cells.   One study suggest that myeloid cells are essential for peripheral nerve regeneration [83].  Cord blood cells are already being used for multiple neurological applications [84].
      • Mesenchymal stem cells.  These are pluripotent stem cells that can be isolated from bone marrow and other tissues.  Several groups have now reported that these cells are beneficial in spinal cord injury [85-87].   These cells may act through similar mechanisms as umbilical cord blood mononuclear cells production of neurotrophins and provision of a hospitable environment for axonal growth.  Mesenchymal cells can be isolated from human umbilical cord and have been reported to have beneficial effects in animal spinal cord injury models [88, 89] and stroke [90].  Carvalho, et al. [91], however, found that CD45+/CD34+ mesenchymal stem cells do not improve neurological recovery in Wistar rats after spinal cord contusion.
      • Astrocytes.  Several studies [92, 93] suggest that certain types of astrocytes facilitate regeneration in the spinal cord.  As opposed to astrocytes that react to injury and surround the injury site, these astrocytes provide a conducive pathway for axonal growth in the spinal cord [94]. Neural stem cells produce these astrocytes and this may account for beneficial effects of neural stem cell transplants into injured spinal cords.  Glial precursor cells likewise may be beneficial [95].
      • Neural stem cells.  These can be obtained from embryonic stem cells, aborted fetuses, or even autologous from the hippocampus or subventricular zones [96].  Many groups have suggested that these cells alone [97, 98], after differentiation [99] or genetic manipulation [100] or in combination with other cells such as olfactory ensheathing glia [101] or Schwann cells [41, 42] are beneficial for spinal cord injury.  One of the main questions that has not yet been answered is how will the transplanted cells interact with neural stem cells that may already be present in the spinal cord [102].
      • Oligodendroglial progenitor cells.  Many groups have transplanted oligodendroglial progenitor cells (O2A) to the spinal cord and have found significant improvement of function [103].  Whether this is due to the remyelination observed or regeneration of axons is not clear.  Keirstead, et al. [93-95] are planning to go to clinical trial with oligodendroglial progenitor cells derived from human embryonic stem cells with Geron.
    • Purine nucleotides.  Several purine nucleotides have been reported to stimulate regeneration of the spinal cord.  These include cGMP and adenosine [34] and the modified guanosine analog AIT-082 [104, 105].  The mechanism is not well understood but may be related to increased cAMP levels and other mechanisms described above.  Several groups have reported the beneficial effects of inosine on regeneration of the spinal cord [106].
    • Ephrins.  The ephrins are guidance molecules that play a role in telling axons whether they have grown into the right places in the central nervous system [107].  Injury upregulated certain ephrins and blockade of these ephrins stimulates regeneration in mammalian spinal cords [107-111].   In particular, EphA4 blocking peptide enhances corticospinal tract regeneration [112].  EphA4-deficient mice regenerate axons and show less astrocytic gliosis [113].
    • Biomaterials.  Many different biomaterials have been reported to support regeneration in spinal cord injury.  For example, self-assembling peptides form a scaffold that can be used to bridge injured rat spinal cords [114, 115] and inhibit glial scar formation and promote axonal elongation [116].  Many types of hydrogels [117-120], other gels [121], poly-lactic-coglycolic acid [122-124], poly-lactic acid [125-127], and other synthetic materials [128] have been tried.  Natural materials such chitosan [129], agarose [130, 131], and alginate [132] have been used.  Plasma, fibrin glue, laminin, and collagen are popular [133-138].  Many types of configurations have been used with and without embedded biological factors [139] or drugs [140].  Many invetigators seeded biomaterials with Schwann cells [141, 142], neural stem cells [143], bone marrow stromal cells [144].
    • Therapeutic vaccines.  Many investigators have vaccinated animals with various putative substances in the hopes of stimulating them to produce antibodies against axonal growth inhibitors, such as Nogo.  For example, Huang, et al. [145] immunized rats with their own spinal cords and found that this stimulated extensive regeneration of large numbers of corticospinal axons.  Vaccination with p472 (a peptide derived from Nogo A [146] and Nogo-66 [10] promotes axonal regeneration and motor recovery after spinal cord injury. DNA vaccination efficiently induces antibodies to Nogo-A without exacerbating experimental autoimmune encephalomyelitis [147, 148] and can stimulate retinal ganglion cell regeneration [149].  DNA vaccines of other known inhibitors, such a MAG and OMGP have been tried as well [150, 151].
    • Electrical Stimulation.  Many early studies suggest that electrical currents stimulate regeneration [152-160].  Electrical stimulation is often used to enhance regeneration and reinnervation by peripheral nerves [161, 162].  A recent clinical trial of oscillating currents [163] suggests improved function in humans [164].
    • Other Therapies.  Many other therapies have been reported to be beneficial for regeneration:
      • Artemin.  This factor promotes re-entry of multiple classes of sensory fiber into the spinal cord and re-establishment of synaptic function and behavior improvements [165].  Incidentally, olfactory ensheathing glia express artemin [166].
      • Erythropoietin.  This hematopoietic hormone is a potent inducer of immune system [167], is neuroprotective [168], reduces oxidative stress [169], enhances regeneration in the spinal cord [170], and has been reported to improve recovery after spinal cord injury[171].
      • Bone Morphogenetic Protein (BMP) inhibitors.  BMP’s are potent inhibitors of axons regeneration [107].  BMP-2/4 are elevated in oligodendroglial cells.  Intrathecal administration of Noggin, a soluble BMP antagonist, results in enhanced locomotor recovery and significant regrowth of the corticospinal tract after spinal cord contusion [172].  BMP, however, is used to treat glial-restricted precursor cells to create astrocytes that support axonal regeneration [93].
      • Methylprednisolone (MP).  While MP has long been regarded to be an inhibitor of axonal growth, if it is applied for too long, it apparently reduces CSPG expression by astrocytes and enhances axonal growth in injured spinal cord as a result [173].
      • Polysialic acid.  Induced expression of these molecules increased the number of axons growing into the lesion cavity by 20-fold [174].
      • Granulocyte colony-stimulating factor (G-CSF).  Pan, et al. [175] reported that G-CSF inhibits programmed cell death and stimulates neuronal progenitor differentiation, that the combination of G-CSF and neural stem cell transplants enhances regeneration in transected rat spinal cords.
  • Neuronal replacement therapies.  Injuries to the spinal cord, particularly to the cervical and lumbosacral enlargement, damage neurons.  When motoneurons are damaged, the muscles they innervate may undergo atrophy.  Most muscles are innervated by many motoneurons and therefore will survive even after severe injuries.  However, cauda equina and peripheral nerve injuries will eliminate all or most of the motor innervations of a muscle and cause the muscle to undergo atrophy.  Likewise, injuries to the conus may cause severe damage to sacral motor centers controlling bowel, bladder, and sexual functions.  In such situations, motoneuronal replacement may be required.  If you had asked me a decade ago whether neuronal replacement therapies were possible, I would have said that it was unlikely.  However, the discovery of stem cells has changed this situation considerably.
    • Neural stem cell transplants.  Scientists who receive their education more than a decade ago were taught that we were born with the neurons that we die with.  In other words, no new neurons are supposed to be created after birth.  This situation changed when many groups discovered that the brain and spinal cord contain neural stem cells that continue to make many thousands of neurons every day.  Therefore, replacement of neurons by endogenous neural stem cells is not only possible but also likely.
    • Embryonic stem cells.  Kerr, et al. [176, 177] has shown that neural stem cells derived from embryonic stem cells are able to replace motoneurons in the spinal cord of animals that have had viral induced motoneuronal death.  When the cell transplants were combined with some of regenerative therapies described above, the neurons not only received input from descending tracts but grew their axons out of ventral roots to re-innervate muscle.   However, some researchers have found that embryonic stem cells do not replace neurons [178].
    • Stimulation of endogenous stem cells.  Lithium drug has long been used to treat manic depression.  Recent studies suggest that this drug may be acting through stimulation of endogenous neural stem cells [179], stimulates spinal cord regeneration [180, 181], supports retinal ganglion survival and axon regeneration [182], and may even reduce neuropathic pain [183].  A recent study [184, 185] suggests that this drug remarkably stops progression of amyotrophic lateral sclerosis.  Although the mechanisms are not well understood, one possible mechanism is through stimulation of endogenous neural stem cells in the spinal cord.
  • Many therapies stimulate remyelination of spinal axons.  Trauma damages not only axons and neurons but also oligodendroglia responsible for myelinating axons in the spinal cord.  Remyelination decreases with age [186].  In addition, oligodendroglia undergo apoptosis in the spinal cord when exposed to pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha).  Furthermore, regenerating axons are naked and need to be myelinated in order to function optimally.  Fortunately, many therapies remyelinate the spinal cord.
    • Oligodendroglial progenitors.  These are cells that make oligodendroglia and can be derived from embryonic stem cells or neural stem cells.  Many investigators have shown that these cells will remyelinate the spinal cord [187]. Geron is planning a clinical trial to assess the effects of pre-differentiated oligodendroglia progenitor cells derived from human embryonic stem cells [188].
    • Schwann cells.  These are of course the cells that myelinate peripheral axons.  Schwann cells sometimes invade into the spinal cord injury site and, when they do invade, will remyelinate most of the spinal axons.   Transplanted Schwann cells were the first transplanted cells to remyelinate axons of the central nervous system [189].  The Schwann cells can also be genetically modified to express molecules that facilitate myelination [55].   However, they have been reported to be non-contributory to regeneration [190].
    • Olfactory ensheathing glia.  In addition to facilitating regeneration [191], OEG cells not only stimulate myelination [192, 193] but themselves can myelinate axons [194, 195] like Schwann cells. These cells can be obtained from adult olfactory bulb and nasal mucosa [196] and fetal olfactory bulb.  The first would be autografts and the latter would be heterografts.
    • Mesenchymal stem cells.  These have been reported to stimulate remyelination in rats [197].  Likewise, bone marrow cells have been reported to stimulate remyelination of the spinal cord [85, 198-201].
    • Myelination antibodies.  Several IgM antibodies have been reported to stimulate remyelination in the spinal cord.  The mechanism is not well understood but these antibodies appear to working as signalling antibodies that stimulate remyelination to occur in the spinal cord [202-204].
  • Combination therapies are necessary for significant regeneration.  It has become clear that combination therapies are necessary for the cure of spinal cord injury.  No single therapy can address all the obstacles to regeneration and neuronal replacement in the spinal cord.  In order for rivers of axons to cross the spinal cord injury site, therapies will need to address at least three obstacles:
    • Bridge the injury site.  Shortly after injury, the injury site is often filled with inflammatory cells and is bereft of cellular adhesion molecules that may help guide and facilitate axonal growth.  In chronic spinal cord injury, the injury site is often walled off by astrocytes that may consider the injury site to be “outside” of the central nervous system.  The extracellular matrix may be filled with CSPG.  To get around this, it is often useful to transplant cells that can “bridge” the gap and allow axons to growth through the injury site.  Many cells can serve this purpose, including astrocytes, olfactory ensheathing glia, umbilical cord blood mononuclear cells, mesenchymal stem cells, and others.
    • Sustained source of growth factors.  Axonal regeneration is very slow, probably no faster than a millimeter per day.  Therefore, a source of sustained growth factor is necessary for long-distance and long-term growth.  These include cells that secrete neurotrophins and a means of stimulating them to do so for long periods.  We recently discovered that lithium stimulates umbilical cord blood mononuclear cells to secrete three of the most important neurotrophins and therefore have proposed a clinical trial to test the effects of combination umbilical cord blood mononuclear cell transplants and lithium.
    • Block growth inhibitors.  At least two known proteins are known to inhibit axonal growth in the spinal cord.  The first is Nogo and several therapies are known to block Nogo, including antibodies against Nogo, Nogo receptor blockers, and blockers of rho [26] or rho kinase that mediate the effects of Nogo.  The second is CSPG and chondroitinase is known to break down CSPG and allow regeneration.  An alternative is a molecule called decorin, which inhibits CSPG production and may allow axonal growth to occur in chronic spinal cord injury [205, 206].

One legitimate question that might be asked is why we don’t have a cure for spinal cord injury already, given all these treatments that regenerate and remyelinate the spinal cords of animals?  Scientists design their experiments to show the possibilities of therapies, choosing models and outcome measures that maximally reflect the benefits of the therapies.  In the clinical situation, different obstacles to regeneration and recovery may be present, such as learned non-use, atrophy, spasticity, and pain.  Of course, animals aren’t being told by their doctors that they won’t walk.  They keep trying.  Animal models of spinal cord differ from the human situation in one important respect.  The distances that axons have to regrow in a rat are much shorter than those in the human.  Finally, few of these therapies have been tried in clinical trials.  When they have been applied, it is often in situations that mitigated against showing the therapeutic efficacy, e.g. using cells that are not immune-matched for transplantation, not addressing all the obstacles to regeneration, not including rehabilitation in the clinical trial protocol, and not providing credible documentation of patient recovery.

In summary, there are many reasons to be optimistic that there will be not just one but many “cures” for spinal cord injury.  I defined a cure as a treatment that would make it so that an observer who did not know you wouldn’t be able to tell that you have spinal cord injury.  I believe that there will be a cure because much data indicate that the spinal cord can regenerate and many therapies restore function in animal studies.  One or more of these will be shown to be successful in people in the coming years, hopefully sooner rather than later.  At the present, we don’t have the clinical trial infrastructure to test all the therapies that have shown promise in animal models.  It is likely that some combination of the therapies will provide cures.  However, we must be aware that the translation of findings from animal studies to human clinical trials will not necessarily be smooth and there will be bumps along the way.


  1. Blight AR (1983).  Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling.  Neuroscience 10: 521-43.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6633870
  2. Ditunno JF, Scivoletto G, Patrick M, Biering-Sorensen F, Abel R and Marino R (2008).  Validation of the walking index for spinal cord injury in a US and European clinical population.  Spinal Cord 46: 181-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17502878
  3. Lurie DI and Selzer ME (1991).  Preferential regeneration of spinal axons through the scar in hemisected lamprey spinal cord.  J Comp Neurol 313: 669-79.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1783686
  4. Tseng AS and Levin M (2008).  Tail regeneration in Xenopus laevis as a model for understanding tissue repair.  J Dent Res 87: 806-16.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18719206
  5. Takeda A, Nakano M, Goris RC and Funakoshi K (2008).  Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord.  Neuroscience 151: 1132-41.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18222047
  6. David S and Aguayo AJ (1985).  Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts.  J Neurocytol 14: 1-12.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4009210
  7. Richardson PM, Issa VM and Aguayo AJ (1984).  Regeneration of long spinal axons in the rat.  J Neurocytol 13: 165-82.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6707710
  8. Aguayo AJ, David S and Bray GM (1981).  Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents.  J Exp Biol 95: 231-40.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7334319
  9. Xie F and Zheng B (2008).  White matter inhibitors in CNS axon regeneration failure.  Exp Neurol 209: 302-12.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17706966
  10. Yu P, Huang L, Zou J, Yu Z, Wang Y, Wang X, Xu L, Liu X, Xu XM and Lu PH (2008).  Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats.  Neurobiol Dis  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18930141
  11. Freund P, Wannier T, Schmidlin E, Bloch J, Mir A, Schwab ME and Rouiller EM (2007).  Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey.  J Comp Neurol 502: 644-59.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17394135
  12. MacDermid VE, McPhail LT, Tsang B, Rosenthal A, Davies A and Ramer MS (2004).  A soluble Nogo receptor differentially affects plasticity of spinally projecting axons.  Eur J Neurosci 20: 2567-79.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15548200
  13. Wang X, Baughman KW, Basso DM and Strittmatter SM (2006).  Delayed Nogo receptor therapy improves recovery from spinal cord contusion.  Ann Neurol 60: 540-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16958113
  14. Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX and Wu W (2007).  LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis.  Nat Med 13: 1228-33.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17906634
  15. Fu QL, Hu B, Wu W, Pepinsky RB, Mi S and So KF (2008).  Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection.  Invest Ophthalmol Vis Sci 49: 975-85.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18326721
  16. Gopalakrishnan SM, Teusch N, Imhof C, Bakker MH, Schurdak M, Burns DJ and Warrior U (2008).  Role of Rho kinase pathway in chondroitin sulfate proteoglycan-mediated inhibition of neurite outgrowth in PC12 cells.  J Neurosci Res 86: 2214-26.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18438921
  17. Kubo T and Yamashita T (2007).  Rho-ROCK inhibitors for the treatment of CNS injury.  Recent Patents CNS Drug Discov 2: 173-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18221230
  18. Kubo T, Hata K, Yamaguchi A and Yamashita T (2007).  Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration.  Curr Pharm Des 13: 2493-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17692017
  19. Hata K, Fujitani M, Yasuda Y, Doya H, Saito T, Yamagishi S, Mueller BK and Yamashita T (2006).  RGMa inhibition promotes axonal growth and recovery after spinal cord injury.  J Cell Biol 173: 47-58.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16585268
  20. Mueller BK, Mack H and Teusch N (2005).  Rho kinase, a promising drug target for neurological disorders.  Nat Rev Drug Discov 4: 387-98.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15864268
  21. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S and Mueller BK (2003).  The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar.  Mol Cell Neurosci 22: 319-30.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12691734
  22. Fournier AE, Takizawa BT and Strittmatter SM (2003).  Rho kinase inhibition enhances axonal regeneration in the injured CNS.  J Neurosci 23: 1416-23.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12598630
  23. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD and McKerracher L (2002).  Rho signaling pathway targeted to promote spinal cord repair.  J Neurosci 22: 6570-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12151536
  24. Ellezam B, Dubreuil C, Winton M, Loy L, Dergham P, Selles-Navarro I and McKerracher L (2002).  Inactivation of intracellular Rho to stimulate axon growth and regeneration.  Prog Brain Res 137: 371-80.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12440379
  25. Dubreuil CI, Winton MJ and McKerracher L (2003).  Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system.  J Cell Biol 162: 233-43.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12860969
  26. McKerracher L and Higuchi H (2006).  Targeting Rho to stimulate repair after spinal cord injury.  J Neurotrauma 23: 309-17.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16629618
  27. Baptiste DC and Fehlings MG (2007).  Update on the treatment of spinal cord injury.  Prog Brain Res 161: 217-33.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17618980
  28. Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y, Symes AJ and Geller HM (2008).  Chondroitin-4-sulfation negatively regulates axonal guidance and growth.  J Cell Sci 121: 3083-91.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18768934
  29. Vahidi B, Park JW, Kim HJ and Jeon NL (2008).  Microfluidic-based strip assay for testing the effects of various surface-bound inhibitors in spinal cord injury.  J Neurosci Methods 170: 188-96.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18314199
  30. Iseda T, Okuda T, Kane-Goldsmith N, Mathew M, Ahmed S, Chang YW, Young W and Grumet M (2008).  Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion.  J Neurotrauma 25: 334-49.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18373483
  31. Shields LB, Zhang YP, Burke DA, Gray R and Shields CB (2008).  Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat.  Surg Neurol 69: 568-77; discussion 577.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18486695
  32. Nakamae T, Tanaka N, Nakanishi K, Kamei N, Sasaki H, Hamasaki T, Yamada K, Yamamoto R, Mochizuki Y and Ochi M (2008).  Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures.  Spinal Cord  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18542086
  33. Tester NJ and Howland DR (2008).  Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats.  Exp Neurol 209: 483-96.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17936753
  34. Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M and Poo M (1998).  Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides.  Science 281: 1515-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9727979
  35. Hannila SS and Filbin MT (2007).  The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury.  Exp Neurol  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17720160
  36. Hannila SS and Filbin MT (2008).  The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury.  Exp Neurol 209: 321-32.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17720160
  37. Bhatt DH, Otto SJ, Depoister B and Fetcho JR (2004).  Cyclic AMP-induced repair of zebrafish spinal circuits.  Science 305: 254-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15247482
  38. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT and Bunge MB (2004).  cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.  Nat Med 10: 610-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15156204
  39. Bunge MB (2008).  Novel combination strategies to repair the injured mammalian spinal cord.  J Spinal Cord Med 31: 262-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18795474
  40. Zhang HT, Gao ZY, Chen YZ and Wang TH (2008).  Temporal changes in the level of neurotrophins in the spinal cord and associated precentral gyrus following spinal hemisection in adult Rhesus monkeys.  J Chem Neuroanat  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18692128
  41. Zhang X, Zeng Y, Zhang W, Wang J, Wu J and Li J (2007).  Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord.  J Neurotrauma 24: 1863-77.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18159998
  42. Guo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ and Cai DZ (2007).  Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury.  Spinal Cord 45: 15-24.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16773039
  43. Sharma HS (2007).  Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms.  Curr Pharm Des 13: 1841-74.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17584113
  44. Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N and Ochi M (2007).  BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.  Spine 32: 1272-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17515814
  45. Iarikov DE, Kim BG, Dai HN, McAtee M, Kuhn PL and Bregman BS (2007).  Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury.  J Neurotrauma 24: 690-702.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17439351
  46. Hendriks WT, Ruitenberg MJ, Blits B, Boer GJ and Verhaagen J (2004).  Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.  Prog Brain Res 146: 451-76.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14699980
  47. Bretzner F, Liu J, Currie E, Roskams AJ and Tetzlaff W (2008).  Undesired effects of a combinatorial treatment for spinal cord injury–transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.  Eur J Neurosci 28: 1795-807.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18973595
  48. Furukawa S and Furukawa Y (2007).  [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].  Brain Nerve 59: 1333-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18095482
  49. Lee MJ, Chen CJ, Cheng CH, Huang WC, Kuo HS, Wu JC, Tsai MJ, Huang MC, Chang WC and Cheng H (2008).  Combined treatment using peripheral nerve graft and FGF-1: changes to the glial environment and differential macrophage reaction in a complete transected spinal cord.  Neurosci Lett 433: 163-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18291581
  50. Kwiecien JM and Avram R (2008).  Long-distance axonal regeneration in the filum terminale of adult rats is regulated by ependymal cells.  J Neurotrauma 25: 196-204.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18352833
  51. Zhang Y, Yeh J, Richardson PM and Bo X (2008).  Cell adhesion molecules of the immunoglobulin superfamily in axonal regeneration and neural repair.  Restor Neurol Neurosci 26: 81-96.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18820404
  52. Chen J, Wu J, Apostolova I, Skup M, Irintchev A, Kugler S and Schachner M (2007).  Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.  Brain 130: 954-69.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17438016
  53. Deumens R, Lubbers M, Jaken RJ, Meijs MF, Thurlings RM, Honig WM, Schachner M, Brook GA and Joosten EA (2007).  Mice lacking L1 have reduced CGRP fibre in-growth into spinal transection lesions.  Neurosci Lett 420: 277-81.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17540505
  54. Chaudhry N, de Silva U and Smith GM (2006).  Cell adhesion molecule L1 modulates nerve-growth-factor-induced CGRP-IR fiber sprouting.  Exp Neurol 202: 238-49.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16860320
  55. Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M and Matsas R (2007).  Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury.  Brain 130: 2159-74.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17626035
  56. Jakovcevski I, Wu J, Karl N, Leshchyns’ka I, Sytnyk V, Chen J, Irintchev A and Schachner M (2007).  Glial scar expression of CHL1, the close homolog of the adhesion molecule L1, limits recovery after spinal cord injury.  J Neurosci 27: 7222-33.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17611275
  57. Lopez-Vales R, Fores J, Navarro X and Verdu E (2007).  Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.  Glia 55: 303-11.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17096411
  58. Raisman G (2007).  Repair of spinal cord injury by transplantation of olfactory ensheathing cells.  C R Biol 330: 557-60.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17631453
  59. Richter MW and Roskams AJ (2007).  Olfactory ensheathing cell transplantation following spinal cord injury: Hype or hope?  Exp Neurol  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17643431
  60. Zhang J, Wang B, Xiao Z, Zhao Y, Chen B, Han J, Gao Y, Ding W, Zhang H and Dai J (2008).  Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling.  Neuroscience 153: 406-13.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18400409
  61. Yuan TF (2008).  Olfactory ensheathing cells transplantation for spinal cord injury treatment: still a long way to go.  Med Hypotheses 71: 153-4.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18316162
  62. Wu J, Sun TS, Ren JX and Wang XZ (2008).  Ex vivo non-viral vector-mediated neurotrophin-3 gene transfer to olfactory ensheathing glia: effects on axonal regeneration and functional recovery after implantation in rats with spinal cord injury.  Neurosci Bull 24: 57-65.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18369383
  63. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH and Li H (2008).  Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke.  J Clin Invest 118: 2482-95.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18596986
  64. Richter MW and Roskams AJ (2008).  Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope?  Exp Neurol 209: 353-67.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17643431
  65. Richter M, Westendorf K and Roskams AJ (2008).  Culturing olfactory ensheathing cells from the mouse olfactory epithelium.  Methods Mol Biol 438: 95-102.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18369752
  66. Radtke C, Sasaki M, Lankford KL, Vogt PM and Kocsis JD (2008).  Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury.  J Rehabil Res Dev 45: 141-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18566933
  67. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PA, Urquhart S and Geraghty T (2008).  Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial.  Brain 131: 2376-86.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18689435
  68. Kubasak MD, Jindrich DL, Zhong H, Takeoka A, McFarland KC, Munoz-Quiles C, Roy RR, Edgerton VR, Ramon-Cueto A and Phelps PE (2008).  OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats.  Brain 131: 264-76.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18056162
  69. Iwatsuki K, Yoshimine T, Kishima H, Aoki M, Yoshimura K, Ishihara M, Ohnishi Y and Lima C (2008).  Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats.  Neuroreport 19: 1249-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18695502
  70. Barnett SC and Riddell JS (2007).  Olfactory ensheathing cell transplantation as a strategy for spinal cord repair–what can it achieve?  Nat Clin Pract Neurol 3: 152-61.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17342191
  71. Li Y, Yamamoto M, Raisman G, Choi D and Carlstedt T (2007).  An experimental model of ventral root repair showing the beneficial effect of transplanting olfactory ensheathing cells.  Neurosurgery 60: 734-40; discussion 740-1.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17415211
  72. Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM and Bunge MB (2007).  Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery.  Glia 55: 976-1000.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17526000
  73. Li Y, Li D and Raisman G (2007).  Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres.  Glia 55: 312-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17099888
  74. Cho SR, Yang MS, Yim SH, Park JH, Lee JE, Eom YW, Jang IK, Kim HE, Park JS, Kim HO, Lee BH, Park CI and Kim YJ (2008).  Neurally induced umbilical cord blood cells modestly repair injured spinal cords.  Neuroreport 19: 1259-63.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18695504
  75. Chen CT, Foo NH, Liu WS and Chen SH (2008).  Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms.  Pediatr neonatol 49: 77-83.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18947003
  76. Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS and Kweon OK (2007).  Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs.  J Vet Sci 8: 275-82.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17679775
  77. Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S, Harada H, Okawa A, Moriya H and Yamazaki M (2006).  The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats.  J Neurosurg Spine 5: 424-33.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17120892
  78. Kuh SU, Cho YE, Yoon DH, Kim KN and Ha Y (2005).  Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.  Acta Neurochir (Wien) 147: 985-92.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16010451
  79. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ and Han ZC (2004).  Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats.  Cell Transplant 13: 113-22.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15129757
  80. Kao CH, Chen SH, Chio CC and Lin MT (2008).  Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors.  Shock 29: 49-55.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17666954
  81. Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS and Dinh DH (2008).  Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury.  Neurochem Res 33: 134-49.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17703359
  82. Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS and Dinh DH (2007).  Axonal remyelination by cord blood stem cells after spinal cord injury.  J Neurotrauma 24: 391-410.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17376002
  83. Barrette B, Hebert MA, Filali M, Lafortune K, Vallieres N, Gowing G, Julien JP and Lacroix S (2008).  Requirement of myeloid cells for axon regeneration.  J Neurosci 28: 9363-76.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18799670
  84. Harris DT (2008).  Cord Blood Stem Cells: A Review of Potential Neurological Applications.  Stem Cell Rev  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18679834
  85. Parr AM, Tator CH and Keating A (2007).  Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury.  Bone Marrow Transplant 40: 609-19.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17603514
  86. Parr AM, Kulbatski I and Tator CH (2007).  Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.  J Neurotrauma 24: 835-45.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17518538
  87. Parr AM and Tator CH (2007).  Intrathecal epidermal growth factor and fibroblast growth factor-2 exacerbate meningeal proliferative lesions associated with intrathecal catheters.  Neurosurgery 60: 926-33; discussion 926-33.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17460529
  88. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H and Fu YS (2008).  Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord.  PLoS ONE 3: e3336.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18852872
  89. Wu J, Feng D and Yang T (2007).  [Effect of transplanting marrow mesenchymal stem cells via subarachnoid space on spinal cord injury and T cell subpopulation in rats].  Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21: 492-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17578289
  90. Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC and Kartje GL (2008).  Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat.  Exp Neurol 211: 588-92.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18440506
  91. Carvalho KA, Vialle EN, Moreira GH, Cunha RC, Simeoni RB, Francisco JC, Guarita-Souza LC, Oliveira L, Zocche L and Olandoski M (2008).  Functional outcome of bone marrow stem cells (CD45(+)/CD34(-)) after cell therapy in chronic spinal cord injury in Wistar rats.  Transplant Proc 40: 845-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18455033
  92. White RE and Jakeman LB (2008).  Don’t fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair.  Restor Neurol Neurosci 26: 197-214.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18820411
  93. Davies JE, Proschel C, Zhang N, Noble M, Mayer-Proschel M and Davies SJ (2008).  Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury.  J Biol 7: 24.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18803859
  94. Imaizumi T, Lankford KL, Kocsis JD and Hashi K (2001).  [The role of transplanted astrocytes for the regeneration of CNS axons].  No To Shinkei 53: 632-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11517487
  95. Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G and Tator CH (2008).  Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis.  Prog Histochem Cytochem 43: 123-76.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18706353
  96. Pfeifer K, Vroemen M, Caioni M, Aigner L, Bogdahn U and Weidner N (2006).  Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord.  Regen Med 1: 255-66.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17465808
  97. Okano H (2006).  Adult neural stem cells and central nervous system repair.  Ernst Schering Res Found Workshop 215-28.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16903425
  98. Okano H, Kaneko S, Okada S, Iwanami A, Nakamura M and Toyama Y (2007).  Regeneration-based therapies for spinal cord injuries.  Neurochem Int 51: 68-73.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17544171
  99. Kim BG, Hwang DH, Lee SI, Kim EJ and Kim SU (2007).  Stem cell-based cell therapy for spinal cord injury.  Cell Transplant 16: 355-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17658126
  100. Tang BL and Low CB (2007).  Genetic manipulation of neural stem cells for transplantation into the injured spinal cord.  Cell Mol Neurobiol 27: 75-85.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17151948
  101. Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC and Zhang XF (2007).  Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.  Med Hypotheses 69: 1234-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17548168
  102. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O and Frisen J (2008).  Spinal cord injury reveals multilineage differentiation of ependymal cells.  PLoS Biol 6: e182.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18651793
  103. Lee KH, Yoon DH, Park YG and Lee BH (2005).  Effects of glial transplantation on functional recovery following acute spinal cord injury.  J Neurotrauma 22: 575-89.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15892602
  104. Jiang S, Khan MI, Middlemiss PJ, Lu Y, Werstiuk ES, Crocker CE, Ciccarelli R, Caciagli F and Rathbone MP (2004).  AIT-082 and methylprednisolone singly, but not in combination, enhance functional and histological improvement after acute spinal cord injury in rats.  Int J Immunopathol Pharmacol 17: 353-66.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15461869
  105. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P and Caciagli F (1999).  Trophic effects of purines in neurons and glial cells.  Prog Neurobiol 59: 663-90.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10845757
  106. Bohnert DM, Purvines S, Shapiro S and Borgens RB (2007).  Simultaneous application of two neurotrophic factors after spinal cord injury.  J Neurotrauma 24: 846-63.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17518539
  107. Bolsover S, Fabes J and Anderson PN (2008).  Axonal guidance molecules and the failure of axonal regeneration in the adult mammalian spinal cord.  Restor Neurol Neurosci 26: 117-30.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18820406
  108. Du J, Fu C and Sretavan DW (2007).  Eph/ephrin signaling as a potential therapeutic target after central nervous system injury.  Curr Pharm Des 13: 2507-18.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17692019
  109. Niclou SP, Ehlert EM and Verhaagen J (2006).  Chemorepellent axon guidance molecules in spinal cord injury.  J Neurotrauma 23: 409-21.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16629626
  110. Willson CA, Irizarry-Ramirez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR and Miranda JD (2002).  Upregulation of EphA receptor expression in the injured adult rat spinal cord.  Cell Transplant 11: 229-39.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12075988
  111. Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J and Whittemore SR (1999).  Induction of Eph B3 after spinal cord injury.  Exp Neurol 156: 218-22.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10192794
  112. Fabes J, Anderson P, Brennan C and Bolsover S (2007).  Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord.  Eur J Neurosci 26: 2496-505.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17970742
  113. Goldshmit Y, Galea MP, Wise G, Bartlett PF and Turnley AM (2004).  Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice.  J Neurosci 24: 10064-73.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15537875
  114. Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF and Wu W (2007).  Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold.  Nanomedicine 3: 311-21.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17964861
  115. Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W and So KF (2006).  Nano hemostat solution: immediate hemostasis at the nanoscale.  Nanomedicine 2: 207-15.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17292144
  116. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI and Kessler JA (2008).  Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.  J Neurosci 28: 3814-23.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18385339
  117. Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J and Sykova E (2008).  Biocompatible hydrogels in spinal cord injury repair.  Physiol Res  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18481908
  118. Horn EM, Beaumont M, Shu XZ, Harvey A, Prestwich GD, Horn KM, Gibson AR, Preul MC and Panitch A (2007).  Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury.  J Neurosurg Spine 6: 133-40.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17330580
  119. Sykova E, Jendelova P, Urdzikova L, Lesny P and Hejcl A (2006).  Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair.  Cell Mol Neurobiol 26: 1113-29.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16633897
  120. Jain A, Kim YT, McKeon RJ and Bellamkonda RV (2006).  In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury.  Biomaterials 27: 497-504.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16099038
  121. Rochkind S, Shahar A, Fliss D, El-Ani D, Astachov L, Hayon T, Alon M, Zamostiano R, Ayalon O, Biton IE, Cohen Y, Halperin R, Schneider D, Oron A and Nevo Z (2006).  Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats.  Eur Spine J 15: 234-45.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16292587
  122. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ and Yaszemski MJ (2006).  Multiple-channel scaffolds to promote spinal cord axon regeneration.  Biomaterials 27: 419-29.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16137759
  123. Moore K, MacSween M and Shoichet M (2006).  Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds.  Tissue Eng 12: 267-78.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16548685
  124. Huang YC, Huang YY, Huang CC and Liu HC (2005).  Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.  J Biomed Mater Res B Appl Biomater 74: 659-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15909301
  125. Hurtado A, Moon LD, Maquet V, Blits B, Jerome R and Oudega M (2006).  Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.  Biomaterials 27: 430-42.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16102815
  126. Deng QY, Li SR, Cai WQ and Su BY (2006).  Poly-lactic acid and agarose gelatin play an active role in the recovery of spinal cord injury.  Neurosci Bull 22: 73-78.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17687401
  127. Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R and Oudega M (2004).  Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord.  Biomaterials 25: 1569-82.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14697859
  128. Carone TW and Hasenwinkel JM (2006).  Mechanical and morphological characterization of homogeneous and bilayered poly(2-hydroxyethyl methacrylate) scaffolds for use in CNS nerve regeneration.  J Biomed Mater Res B Appl Biomater  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16447165
  129. Yu LM, Kazazian K and Shoichet MS (2007).  Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications.  J Biomed Mater Res A 82: 243-55.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17295228
  130. Stokols S and Tuszynski MH (2006).  Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.  Biomaterials 27: 443-51.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16099032
  131. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J and Tuszynski MH (2006).  Templated agarose scaffolds support linear axonal regeneration.  Tissue Eng 12: 2777-87.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17518647
  132. Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U and Weidner N (2006).  The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels.  Biomaterials 27: 3560-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16500703
  133. Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Suzuki N, Nakamura M, Okano H and Igarashi R (2007).  Plasma as a scaffold for regeneration of neural precursor cells after transplantation into rats with spinal cord injury.  Cell Transplant 16: 57-65.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17436855
  134. Petter-Puchner AH, Froetscher W, Krametter-Froetscher R, Lorinson D, Redl H and van Griensven M (2007).  The long-term neurocompatibility of human fibrin sealant and equine collagen as biomatrices in experimental spinal cord injury.  Exp Toxicol Pathol 58: 237-45.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17118635
  135. Cheng H, Huang YC, Chang PT and Huang YY (2007).  Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury.  Biochem Biophys Res Commun 357: 938-44.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17466943
  136. Taylor SJ and Sakiyama-Elbert SE (2006).  Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.  J Control Release 116: 204-10.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16919351
  137. Taylor SJ, Rosenzweig ES, McDonald JW, 3rd and Sakiyama-Elbert SE (2006).  Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury.  J Control Release  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16797770
  138. Wang SS, Hu YY, Luo ZJ, Chen LW, Liu HL, Meng GL, Lu R and Xu XZ (2005).  [Morphology research of the rat sciatic nerve bridged by collage-heparin sulfate scaffold].  Zhonghua Wai Ke Za Zhi 43: 531-4.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15938914
  139. Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ and Lamarca F (2008).  Macro-architectures in spinal cord scaffold implants influence regeneration.  J Neurotrauma 25: 1027-37.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18721107
  140. Willerth SM and Sakiyama-Elbert SE (2007).  Approaches to neural tissue engineering using scaffolds for drug delivery.  Adv Drug Deliv Rev 59: 325-38.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17482308
  141. Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO and Mottaghy K (2008).  The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration.  Neurochem Int  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19084565
  142. Novikova LN, Pettersson J, Brohlin M, Wiberg M and Novikov LN (2008).  Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair.  Biomaterials 29: 1198-206.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18083223
  143. Potter W, Kalil RE and Kao WJ (2008).  Biomimetic material systems for neural progenitor cell-based therapy.  Front Biosci 13: 806-21.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17981590
  144. Itosaka H, Kuroda S, Shichinohe H, Yasuda H, Yano S, Kamei S, Kawamura R, Hida K and Iwasaki Y (2008).  Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: A novel material for CNS tissue engineering.  Neuropathology  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18992011
  145. Huang DW, McKerracher L, Braun PE and David S (1999).  A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord.  Neuron 24: 639-47.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10595515
  146. Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E and Schwartz M (2001).  Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens.  Proc Natl Acad Sci U S A 98: 15173-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11752461
  147. Bourquin C, van der Haar ME, Anz D, Sandholzer N, Neumaier I, Endres S, Skerra A, Schwab ME and Linington C (2008).  DNA vaccination efficiently induces antibodies to Nogo-A and does not exacerbate experimental autoimmune encephalomyelitis.  Eur J Pharmacol 588: 99-105.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18495110
  148. Merkler D, Oertle T, Buss A, Pinschewer DD, Schnell L, Bareyre FM, Kerschensteiner M, Buddeberg BS and Schwab ME (2003).  Rapid induction of autoantibodies against Nogo-A and MOG in the absence of an encephalitogenic T cell response: implication for immunotherapeutic approaches in neurological diseases.  Faseb J 17: 2275-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14563689
  149. Ellezam B, Bertrand J, Dergham P and McKerracher L (2003).  Vaccination stimulates retinal ganglion cell regeneration in the adult optic nerve.  Neurobiol Dis 12: 1-10.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12609484
  150. Xu G, Nie DY, Chen JT, Wang CY, Yu FG, Sun L, Luo XG, Ahmed S, David S and Xiao ZC (2004).  Recombinant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: a potential strategy for axonal regeneration.  J Neurochem 91: 1018-23.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15525355
  151. Nie DY, Xu G, Ahmed S and Xiao ZC (2007).  DNA vaccine and the CNS axonal regeneration.  Curr Pharm Des 13: 2500-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17692018
  152. Sisken BF, Walker J and Orgel M (1993).  Prospects on clinical applications of electrical stimulation for nerve regeneration.  J Cell Biochem 51: 404-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8496243
  153. Moriarty LJ and Borgens RB (2001).  An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord.  J Neurocytol 30: 45-57.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11577245
  154. Borgens RB (1999).  Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels.  Neuroscience 91: 251-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10336075
  155. Borgens RB and Bohnert DM (1997).  The responses of mammalian spinal axons to an applied DC voltage gradient.  Exp Neurol 145: 376-89.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9217074
  156. Borgens RB, Blight AR and McGinnis ME (1990).  Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields.  J Comp Neurol 296: 634-53.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2358555
  157. Borgens RB, Blight AR and McGinnis ME (1987).  Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig.  Science 238: 366-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3659920
  158. Borgens RB, Blight AR, Murphy DJ and Stewart L (1986).  Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field.  J Comp Neurol 250: 168-80.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3489013
  159. Borgens RB, Blight AR and Murphy DJ (1986).  Axonal regeneration in spinal cord injury: a perspective and new technique.  J Comp Neurol 250: 157-67.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3745509
  160. Borgens RB, Roederer E and Cohen MJ (1981).  Enhanced spinal cord regeneration in lamprey by applied electric fields.  Science 213: 611-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7256258
  161. Vivo M, Puigdemasa A, Casals L, Asensio E, Udina E and Navarro X (2008).  Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair.  Exp Neurol 211: 180-93.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18316076
  162. Ruggieri MR, Braverman AS, D’Andrea L, McCarthy J and Barbe MF (2008).  Functional reinnervation of the canine bladder after spinal root transection and immediate somatic nerve transfer.  J Neurotrauma 25: 214-24.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18352835
  163. Hamid S and Hayek R (2008).  Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview.  Eur Spine J 17: 1256-69.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18677518
  164. Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers RB, Hagy S and Nelson P (2005).  Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial.  J Neurosurg Spine 2: 3-10.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15658119
  165. Wang R, King T, Ossipov MH, Rossomando AJ, Vanderah TW, Harvey P, Cariani P, Frank E, Sah DW and Porreca F (2008).  Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury.  Nat Neurosci 11: 488-96.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18344995
  166. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T and Olson L (2003).  Neurotrophic properties of olfactory ensheathing glia.  Exp Neurol 180: 167-71.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12684030
  167. Yuan R, Maeda Y, Li W, Lu W, Cook S and Dowling P (2008).  Erythropoietin: a potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE.  PLoS ONE 3: e1924.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18382691
  168. Yoo JY, Won YJ, Lee JH, Kim JU, Sung IY, Hwang SJ, Kim MJ and Hong HN (2008).  Neuroprotective effects of erythropoietin posttreatment against kainate-induced excitotoxicity in mixed spinal cultures.  J Neurosci Res  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18711747
  169. Yazihan N, Uzuner K, Salman B, Vural M, Koken T and Arslantas A (2008).  Erythropoietin improves oxidative stress following spinal cord trauma in rats.  Injury  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18635178
  170. Toth C, Martinez JA, Liu WQ, Diggle J, Guo GF, Ramji N, Mi R, Hoke A and Zochodne DW (2008).  Local erythropoietin signaling enhances regeneration in peripheral axons.  Neuroscience 154: 767-83.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18456410
  171. Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Fontana E, Gorio A and De Biasi S (2008).  Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury.  Neuroscience 151: 452-66.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18065151
  172. Matsuura I, Taniguchi J, Hata K, Saeki N and Yamashita T (2008).  BMP inhibition enhances axonal growth and functional recovery after spinal cord injury.  J Neurochem  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18221366
  173. Liu WL, Lee YH, Tsai SY, Hsu CY, Sun YY, Yang LY, Tsai SH and Yang WC (2008).  Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes.  Glia 56: 1390-400.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18618653
  174. Zhang Y, Ghadiri-Sani M, Zhang X, Richardson PM, Yeh J and Bo X (2007).  Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons.  Mol Cell Neurosci 35: 109-19.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17363265
  175. Pan HC, Cheng FC, Lai SZ, Yang DY, Wang YC and Lee MS (2008).  Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.  J Clin Neurosci 15: 656-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18406145
  176. Kerr DA, Llado J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S, Gearhart JD and Rothstein JD (2003).  Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury.  J Neurosci 23: 5131-40.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12832537
  177. Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, Backovic S, Rothstein JD and Kerr DA (2004).  Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats.  Proc Natl Acad Sci U S A 101: 7123-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15118094
  178. Yang J, Li C and Zhai R (2007).  [Experimental study on transplantation of embryonic stem cells in treating spinal cord injury].  Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21: 487-91.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17578288
  179. Su H, Chu TH and Wu W (2007).  Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord.  Exp Neurol 206: 296-307.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17599835
  180. Dill J, Wang H, Zhou F and Li S (2008).  Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS.  J Neurosci 28: 8914-28.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18768685
  181. Yick LW, So KF, Cheung PT and Wu WT (2004).  Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury.  J Neurotrauma 21: 932-43.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15307905
  182. Huang X, Wu DY, Chen G, Manji H and Chen DF (2003).  Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism.  Invest Ophthalmol Vis Sci 44: 347-54.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12506095
  183. Shimizu T, Shibata M, Wakisaka S, Inoue T, Mashimo T and Yoshiya I (2000).  Intrathecal lithium reduces neuropathic pain responses in a rat model of peripheral neuropathy.  Pain 85: 59-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10692603
  184. Fornai F, Longone P, Ferrucci M, Lenzi P, Isidoro C, Ruggieri S and Paparelli A (2008).  Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium.  Autophagy 4: 527-30.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18367867
  185. Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A, Bellio N, Lenzi P, Modugno N, Siciliano G, Isidoro C, Murri L, Ruggieri S and Paparelli A (2008).  Lithium delays progression of amyotrophic lateral sclerosis.  Proc Natl Acad Sci U S A 105: 2052-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18250315
  186. Siegenthaler MM, Ammon DL and Keirstead HS (2008).  Myelin pathogenesis and functional deficits following SCI are age-associated.  Exp Neurol 213: 363-71.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18644369
  187. Imaizumi T, Lankford KL, Burton WV, Fodor WL and Kocsis JD (2000).  Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord.  Nat Biotechnol 18: 949-53.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10973214
  188. Coutts M and Keirstead HS (2008).  Stem cells for the treatment of spinal cord injury.  Exp Neurol 209: 368-77.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17950280
  189. Hill CE, Moon LD, Wood PM and Bunge MB (2006).  Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival.  Glia 53: 338-43.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16267833
  190. Vroemen M, Caioni M, Bogdahn U and Weidner N (2007).  Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord.  Cell Tissue Res 327: 1-13.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16941122
  191. Santos-Benito FF and Ramon-Cueto A (2003).  Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system.  Anat Rec B New Anat 271: 77-85.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12619089
  192. Au E, Richter MW, Vincent AJ, Tetzlaff W, Aebersold R, Sage EH and Roskams AJ (2007).  SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair.  J Neurosci 27: 7208-21.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17611274
  193. Boyd JG, Doucette R and Kawaja MD (2005).  Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord.  Faseb J 19: 694-703.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15857884
  194. Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG and Franklin RJ (2000).  Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons.  Brain 123 ( Pt 8): 1581-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10908188
  195. Smith PM, Sim FJ, Barnett SC and Franklin RJ (2001).  SCIP/Oct-6, Krox-20, and desert hedgehog mRNA expression during CNS remyelination by transplanted olfactory ensheathing cells.  Glia 36: 342-53.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11746771
  196. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T and Mackay-Sim A (2005).  Autologous olfactory ensheathing cell transplantation in human spinal cord injury.  Brain 128: 2951-60.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16219671
  197. Keilhoff G, Stang F, Goihl A, Wolf G and Fansa H (2006).  Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination.  Cell Mol Neurobiol 26: 1235-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16779672
  198. Kocsis JD, Akiyama Y, Lankford KL and Radtke C (2002).  Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord.  J Rehabil Res Dev 39: 287-98.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12051471
  199. Akiyama Y, Radtke C and Kocsis JD (2002).  Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells.  J Neurosci 22: 6623-30.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12151541
  200. Akiyama Y, Radtke C, Honmou O and Kocsis JD (2002).  Remyelination of the spinal cord following intravenous delivery of bone marrow cells.  Glia 39: 229-36.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12203389
  201. Inoue M, Honmou O, Oka S, Houkin K, Hashi K and Kocsis JD (2003).  Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord.  Glia 44: 111-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14515327
  202. Warrington AE and Rodriguez M (2008).  Remyelination-promoting human IgMs: developing a therapeutic reagent for demyelinating disease.  Curr Top Microbiol Immunol 318: 213-39.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18219820
  203. Ciric B, Van Keulen V, Paz Soldan M, Rodriguez M and Pease LR (2004).  Antibody-mediated remyelination operates through mechanism independent of immunomodulation.  J Neuroimmunol 146: 153-61.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14698858
  204. Ciric B, Howe CL, Paz Soldan M, Warrington AE, Bieber AJ, Van Keulen V, Rodriguez M and Pease LR (2003).  Human monoclonal IgM antibody promotes CNS myelin repair independent of Fc function.  Brain Pathol 13: 608-16.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14655764
  205. Davies JE, Tang X, Bournat JC and Davies SJ (2006).  Decorin promotes plasminogen/plasmin expression within acute spinal cord injuries and by adult microglia in vitro.  J Neurotrauma 23: 397-408.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16629625
  206. Davies JE, Tang X, Denning JW, Archibald SJ and Davies SJ (2004).  Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries.  Eur J Neurosci 19: 1226-42.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15016081

3 Responses to “FAQ #1: Will There Be A Cure For Spinal Cord Injury?”

  1. Simon Roulstone Says:

    Great article Wise, really interesting, and a great insight into what will hopefully develop in the future to reverse this devastating condition.

    Best regards


  2. nadine Says:

    please reply in my email address…

  3. siatic nevrve Says:

    Wonderful items from you, man. I’ve keep in mind your stuff previous to and you’re just too wonderful. I really like what you’ve acquired here, certainly like what you’re stating and the way during which you say it. You are making it entertaining and you continue to care for to stay it sensible. I can’t wait to read far more from you. This is actually a great web site.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: