FAQ #4: What Can I Do Now to Be Ready for the Cure?

FAQ #4.  What Can I Do Now to Be Ready for the Cure?
By Wise Young, Ph.D., M.D., Rutgers University
W. M. Keck Center for Collaborative Neuroscience
604 Allison Road, Piscataway, NJ 08854-8082
Posted 11 January 2009, last updated 13 January 2009

The fourth most frequently asked question, usually asked after the questions if a cure is possible, when it will be available, and whether it would be applicable to chronic spinal cord injury, is what people can do to prepare for the cure.  Obviously, the first priority should be to take care of the body, to prevent muscle and bone atrophy, and other changes that prevent recovery of function.

Muscles undergo atrophy when they are not used.  Such atrophy is reversible.  Spasticity naturally prevents atrophy and therefore should not be over suppressed with drugs.  Standing will prevent atrophy of extensor anti-gravity muscles and will exercise balancing reflexes.  Stimulating muscles for certain functions, such as walking and standing, can rebuild muscles.

Bones also undergo atrophy when not used.  Until recently, no therapy had been shown to be effective for reversing bone loss after spinal cord injury. Recent studies suggest that the bisphosphonate alendronate restores bone mineral density but it is not clear that it increases bone strength and reduces fracture risk.   So, it seems reasonable to do both, i.e. weight bearing and alendronate.

It is also common sense to avoid irreversible surgery.  For example, tendon transfers, the Mitrofanoff procedure and bladder augmentation, colostomy, and sphincterotomy can significantly improve quality of life but may not be readily reversible.  People should recognize that the surgery may not be reversible.

What about locomotor training? Many studies suggest that weight-supported treadmill training can restore unassisted ambulation, even after severe incomplete spinal cord injury.  However, recent studies suggest that toverground walking may achieve similar results in people with incomplete spinal cord injuries.

Finally, what should we do about the brain?  Over half of the brain is devoted to input from and output to the spinal cord.  Non-use of neurons may cause atrophy or new connections in brain and spinal cord.  These connections are responsible for recovery, spasticity, spasms, and neuropathic pain.  Exercise, training, electrical stimulation, and pharmacological therapies can affect neural reorganization and function.

In the following sections, I will discuss some practical approaches to reversing atrophy of muscle and bone, some surgical therapies to avoid, the effects of locomotor training and spinal cord stimulation, the role of CNS reorganization, and the importance of education.  The goal is to provide a framework for how people can best prepare their bodies and central nervous system for recovery after spinal cord injury.

Reversing Muscle Atrophy

Immobilization causes muscle atrophy.  An immobilized leg will show measurable loss of muscle and bone calcium.  Spinal cord injury causes  muscle and bone losses in body parts innervated by spinal cord below the injury.  Muscle atrophy was recognized in the earliest descriptions of spinal cord injury [1].  Atrophy is most marked in patients with flaccid paraplegia resulting from lower thoracic or lumbar spinal cord injury [2].  Studies in rats revealed significant changes in muscles at 3, 7 and 30 days after spinal cord injury, similar to changes seen after denervation [3].  Scelsi, et al. [4] biopsied muscle from 22 paraplegic patients and found similar muscle degeneration.

Spasticity [5, 6] naturally prevents muscle atrophy.  In fact, I wonder if spasticity had not evolved as a mechanism to prevent atrophy.  In 1988, Robinson, et al. [7] showed that patients with greater spasticity had greater stimulated muscle responses and strength in their legs. While extensor spasms may interfere with transfers and flexor spasms at night may interfere with sleep [8], these activities are a form of free exercise and spasticity should not be completely suppressed with drugs.  High doses of anti-spasticity drugs, such baclofen given orally [9] or intrathecally, will reduce spasticity [10] and convert it to flaccidity [11].

Standing prevents atrophy of leg muscles. Standing is a reflex and balancing involves multiple reflexes [12].  When a person stands, pressure on the soles of the feet activates extensor muscles.  Of many approaches to rebuilding muscles [13], standing is the least costly and has extensively documented health benefits, including relief of skin pressure [14], reduction of constipation [15], improved bladder function, and better ability to straighten legs [16, 17]. Consumer pressure [18] for standing devices have led to availability of several standing wheelchairs [19] and many other standing devices.  People should utilize such devices to stand several hours every day if possible.

Functional electrical stimulation (FES) can reverse muscle atrophy.  Many devices are available, including those designed to build muscles for standing and walking [20-27], new walking orthoses [28, 29] and neuroprostheses [30-32], and treadmills for gait training [33].   FES of innervated will reverse atrophy [34].  Lower extremity functional electrical stimulation (FES) for pedaling a bicycle against variable resistance not only increases muscle endurance, speed, and strength but also increases aerobic metabolism and endurance [35, 36].  Upper limb FES can restore upper limb muscles[37, 38].  FES can also be used to assist gait [39] and will suppress spasticity as well to reduce the amount of anti-spasticity drugs [40].

High intensity stimulation is required to reverse atrophy of denervated muscles [41].  Surface FES stimulates nerves that enter and they activate the deeper musculature.  In denervated muscle, FES cannot stimulate nerves to activate deeper muscles and hence are ineffective.  Very high currents are required to penetrate into and activate deeper muscles.  However, care must be taken to use large electrode so that the currents are spread out over a large area of skin [42-47].  Such stimulation can restore even denervated muscles.

Reversing Osteoporosis

Bone loss occurs after spinal cord injury [48].  The most significant bone losses occur in the lower extremities [49, 50].  Biering-Sorenson, et al. [51] studied 6 men and 2 women with “complete” SCI for up to 53 months, comparing upper and lower extremity bone, finding that certain areas showed rapid loss but other, including the spine and femoral shaft continued to decline slowly as long as 4 years after injury.  Frotzler, et al. [52] used quantitative CT to measure bone loss and found that bone loss reached a plateau in 15 months.  The bone loss did not seem to be due to testicular hormonal levels [53].

Mechanical loading and FES-induced muscle activity reduces but does not prevent bone loss. Dudley-Javorski, et al. [54] reported their experience with one patient who performed nearly 8,000 electrically stimulated soleus muscle contractions per month in one leg, resulting in significant increases in soleus muscle torque and fatigue index of the stimulated side compared to the unstimulated control side.  Bone mass density (BMD) of the untrained leg declined by 14% during the first year but fell only 7% in the trained leg.  Shields, et al. [55] had earlier shown that FES significantly improved BMD in one leg compared to the other untrained leg.  Others [56] found no effect of FES on BMD.

The bisphosphonate alendronate [57] prevents bone loss in patients with acute spinal cord injury [58].  In 31 age- and gender-matched patients randomized to the drug or placebo, treated patients had an average of 5.3% whole body BMD and 17.6% difference in hip BMD, confirming an earlier Brazilian study [59] reporting that the drug increased bone calcium.  Sniger & Garshick [60] had reported that alendronate increases bone density in people with chronic spinal cord injury.  As early as 1999, Lyles [61] and Harris, et al. [62] were already recommending alendronate for vertebral compression fractures in older women.  Alendronate prevents the hypercalciuria after spinal cord injury [63].

Bone loss increases risk of lower extremity fractures [64] and hip instability is common in patients after spinal cord injury [65].  Increasing BMD alone may not increase strength and may make bone more brittle. Dionyssoiotis, et al. [66] studied tibial strength in 50 patients with acute and chronic spinal cord injury, comparing those that had T4-7 levels and those with T8-12 levels.  Bone strength declined significantly over time in the lower thoracic and not the upper thoracic injuries.  The authors suggested that neurogenic factors may be involved in bone loss.  Maimoun, et al. [67, 68] had concluded that neurological factors were more important than mechanical or hormonal factors.

In summary, bone loss is a serious unsolved problem in spinal cord injury.  Mechanical loading and FES-induced muscle activity will reduce but does not completely prevent bone loss in acute spinal cord injury.  The bisphophonate alendronate prevents bone loss in acute spinal cord injury and may even restore bone mineral density in chronic spinal cord injury but may not normalize bone strength.  However, a combination of mechanical loading, FES-induced muscle activity, and alendronate may be necessary to restore bone mineral density and bone strength in people with spinal cord injury.

Reversible Surgery

Surgical therapies are frequently done to improve function and to increase independence in people with spinal cord injury. These include tendon transfers for the hand, the Mitrofanoff procedure and bladder augmentation to facilitate bladder care, colostomy and sphincterotomy to reduce the time required for take care of the bowel and bladder. I will discuss some of these procedures from the viewpoint of their reversibility.   If the procedure will provide significant function, independence, or better quality of life now, people should make the decision in favor of what they need today and not wait for tomorrow.  However, they need to understand if the surgery is not easily reversible.

Tendon surgery.  Tendon transfers take part of a tendon from a muscle and transfer the power of that muscle to another that is weak.  It is useful for restoring tenodesis or ability to use fingers to oppose the thumb to pick things up and to feed oneself.  It can be used to restore the triceps, which locks the elbow and allows a person independence to transfer on their own.  Although tendon transfers are reversible in theory, I know of few occasions in which reversals were done.

Mitrofanoff procedure.  Originally developed for children with spina bifida and other conditions that compromise bladder function, this procedure uses the appendix as a conduit to the bladder through the umbilicus, allowing people to catheterize themselves through their belly button. For quadriplegic women, it is a boon because it allows them to catheterize themselves without having to take their clothes off and lying down.  The surgeon may sew a piece of intestine to the bladder wall, so that the bladder can no longer contract, allowing people to reduce anti-cholinergic drugs for bladder spasticity.  The procedure itself should be reversible since it does not interfere with the bladder sphincter at all.

Colostomy.  A colostomy is a procedure where the colon is connected to an opening in the abdominal wall, allowing feces to come out into a bag.  It is a blessing for many people who spend hours every morning doing their bowel routines and for people with fecal incontinence.  Depending on how the procedure is carried out, it can be either temporary or permanent.  Many people have had temporary colostomies that have been reversed.

Sphincterotomy.  Many men with paralyzed bladder opt for a sphincterotomy, i.e. cutting the bladder sphincter so that the urine drains through a condom catheter to a bag.  The surgery is simple and it saves work required for intermittent catheterization.  However, the sphincterotomies are probably difficult to reverse and seldom done in practice.

Of these procedures, the colostomy and Mitrofanoff should be reversible if the surgeon takes care to minimize tissue removal.  Tendon surgeries should also be reversible.  Sphincterotomies may be less reversible although they should be reparable in theory.  If the surgeon knows that there is wish for reversal of procedure, they can take precautions to preserve tissues that may be required for reversal of the procedure.  This is something that should be discussed with the surgeon.

Locomotor Training

Scientists have long known that it was possible to train animals with transected spinal cords to walk [69-71], that noradrenergic and serotonergic agonists facilitate walking [72, 73], and the mammalian lumbar spinal cord is capable of great plasticity [74] and even learning [75, 76], providing a rational basis for locomotor training in people with spinal cord injury [73].  Training cats with transected spinal cords for 30 minutes per day and 5 days a week improves their stepping ability [75, 77].  Muir & Steeves [78] showed that phasic cutaneous input facilitates locomotor recovery after incomplete spinal cord injuries in chick.  De Leon, et al. [79] showed that the animals maintained walking functions after training ended.  Kim, et al. [79] found that serotonin agonists enhanced locomotor recovery in rats that received neural transplants [80]. Although treadmill training did not affect locomotor recovery in rats after spinal contusion injury [81] and enriched environment alone facilitated walking recovery[82], many scientists speculated that treadmill training would improve locomotor function after spinal cord injury.

Treadmill training improves walking in humans after spinal cord injury.  Wernig & Muller [83] first reported in 1992 that treadmill training restored walking in people with chronic spinal cord injury. By 1995, Wernig, et al. [84] had trained 89 people, 44 of whom had chronic incomplete spinal cord injury.  The 44 subjects with chronic spinal cord injury trained for 3-20 weeks at 0.5 to 18 years after injury and 33 were unable to walk or stand unassisted before training.  By the end of training, 25 of the 33 (75%) initially wheelchair bound subjects could walk independently, 7 improved but still needed help, and one did not improve.  Only 6 of the 44 people could do staircase walking before the therapy but 34 were able to do so after training.  In 1998, Wernig, et al. [85] reported that 31 of 35 subjects maintained their locomotor improvement, 3 showed further improvement, and one lost function.

Dietz, et al. [75] similarly found in 1995 that treadmill training with body weight support modulated electromyographic activity in leg muscles, similar to healthy subjects, except that activity in the gastrocnemius (the main antigravity muscle during gait) was significantly lower.  Dobkin, et al. [86] studied the effects of weight-supported locomotor training on complete and incomplete subjects with spinal cord injury[86] and showed the sensory input associated with rhythmic locomotion can enhance the output of lumbosacral neural circuits and contribute to stepping activity.  Behrman & Harkema [87] showed that treadmill training improved ability of people to perform stepping and the training either achieved or improved overground walking.

Based on the above studies, the U.S. National Institutes of Health commissioned a multicenter study to assess treadmill locomotor training.  Dobkins, et al. [88] compared weight-supported treadmill and over-ground walking training after acute incomplete spinal cord injury.  In 146 subjects recruited at 6 regional centers within 8 weeks after injury, all had FIM-locomotor scores of <4 and were randomized to treadmill or overground training. At 6 months, both groups showed substantial improvement:  35% of ASIA B, 92% of ASIA C, and all of ASIA D subjects walked independently. There was no difference between the two treatments.

Spinal Cord Stimulation

Many scientists speculated that humans have a central pattern generator (CPG) for locomotion in the human spinal cord [89-91] and proposed the use of spinal cord stimulation to activate locomotion [92].  Hadi, et al. [93] showed that destruction of interneurons neurons in the L2  spinal cord produced lasting loss of walking ability in rats, suggesting that this is where the mammalian CPG may be located.  Ribotta, et al. [80] showed that transplantation of loecus coreulus cells to provide serotonergic innervation of L1-L2 spinal cord segment restored well-defined locomotor patterns in rats.  The serotonin agonist 8-OH-DPAT induces locomotor movements in low thoracic transected mice [94].  Yakovenko, et al [95] showed that intraspinal stimulation of spinal cords of transected rats significantly increased locomotor scores.

Dimitrijevic, et al. [96, 97] reported evidence of a spinal central pattern generator and showed that stimulation of this center improved gait in people after spinal cord injury.  The center can be readily stimulated with epidural electrodes placed over the L2 spinal cord [98, 99].  The stimulation initiates extension of lower limb [100] and can produce stepping-like movements [101] in subjects with complete spinal cord injury.  In both complete and incomplete spinal cord injury, reorganization of the spinal cord circuitry provides alternative mechanisms of locomotor and motor control [102, 103].  In 2007, Mianssian, et al. [104] found that human lumbar cord circuitry can be activated by extrinsic tonic input to generate locomotor-like activity.  Early application both FES and CPG stimulation may be helpful in preventing disuse atrophy of both muscle and neurons.

CPG stimulation helps locomotor training.  Barriere, et al. [105] pointed out the important role of the central pattern generator in the recovery of voluntary locomotion. Herman, et al. [106-108] has shown that epidural stimulation of the T10/T12 central pattern generator in humans facilitates walking recovery in people with chronic spinal cord injury, improving walking speed and endurance while reducing the sense of effort by the subject.  In particular, Carhart, et al. [107] described a patient with chronic incomplete tetraplegia in whom partial weight-bearing therapy alone was insufficient to achieve functional ambulation.  However, application of the T10/T12 stimulation not only produced further improvements in treadmill walking but facilitated transfer of these gains to overground walking.  The participant initially reported a reduction in the sense of effort for overground walking from 8/10 to 3/10 (Borg scale) and was able to double his walking speed to 0.35 m/sec and distance to 325 m.

Spinal cord stimulation facilitates walking not by directly activating neurons that control walking but by lowering the threshold to activate walking and to recruit additional muscles that may not be under voluntary control.  The stimulation not only increases the efficiency and speed of walking but reduces both perceived and actual effort required for walking, including metabolic energy utilization during walking [106].  Recent studies suggest that the electrodes don’t even have to be placed epidurally but can activate the spinal cord when placed on skin overlying the lumbar cord [104, 109]. Note that rhythmic auditory stimulation likewise has strong entrainment effects on gait cadence, velocity, and stride length in patients with incomplete spinal cord injury [110].


Over half of the brain is devoted to processing sensory and motor signals coming from or going to the spinal cord.  What happens to the parts of the brain that are longer receiving and no longer having a place to send commands to?  Early studies by Goldberger, et al. [111-114] had shown that local neurons sprout to fill in synaptic sites vacated by injured axons.  Depending on the source of the sprouting axons, the neuron may become suppressed or hyperexcitable.

Jain, et al. [115] found new brainstem connections in adult monkeys after dorsal column transection, where face afferents from the trigeminal would grow into the cuneate nucleus, expanding the face region into the hand region of the somatosensory cortex. Kaas, et al. [116] reported that damage to sensory afferents in the spinal dorsal columns render the corresponding parts of the primary somatosensory inactive to tactile stimulation and initiate maladaptive neuronal circuitry, including hyperalgesia [117].  If some dorsal column afferents are present, they will activate larger portions of the somatosensory cortex.

The corticospinal tract (that directly connects the cortex to spinal cord) reorganizes after spinal cord injury. Diffusion tensor imaging show progressive degeneration and sprouting of spared fibers in the corticospinal tract [118].  Corticospinal evoked potentials revealed enhanced pathways targeting muscles rostral (above) to the spinal injury [119] and stimulating remaining pathways produces exaggerated motor responses.  Hayes, et al. [120] used magnetic transcranial stimulation to reinforce reflexes in patients after spinal cord injury.

The spinal cord proximal to the injury site also reorganizes.  Functional MRI studies of rats after midthoracic spinal cord injuries show that small sensory stimuli that would not normally activate spinal cord also activate neurons in the dorsal horn of spinal cord below the injury site [121]. People show exaggerated startle responses in muscles proximal to the injury site [122].  Hand motor evoked potentials in people with chronic complete thoracic spinal have longer central conduction times [123].

The spinal cord below the injury site also changes.  Except for loss of motoneurons [124] and second lesions in the lower spinal cord [125, 126], circuits in spinal cord below the injury site often show increased recurrent inhibition after injury [127].   Konya, et al. [128] found proliferation of endogenous neural stem cells, increased immunoreactivity of serotonin and synaptophysin, and faster neurite growth/sprouting after anastomoses of functional nerves with distal nerves.  Peripheral nerve injury induces more reorganization of spinal circuits below the injury site [129].

The brain and spinal cord above and below the injury site are plastic and reorganize after injury, often in response to a variety of inputs.  Exercise and other activities in the brain and spinal cord are likely to affect both brain and spinal cord after injury, including spasticity and neuropathic pain. Much of the recovery of locomotor and other functions occur solely because of this reorganization and not regeneration [130].


Many studies indicate that one of the best predictor of quality of life after spinal cord injury is education level.  According to Smith, et al. [131], higher levels of education were associated with lower odds of FMD (frequent mental distress), FDS (frequent depressive symptoms), and poor or fair health in U.S. veterans with spinal cord injury. More education in the United States is associated with greater Internet use and higher quality of life [132].  In Canada, individuals with more formal education had better quality of life [133].  Likewise, education predicts quality of life quotients in Europe [134-136].  But there are other reasons for education.

Understanding of the mechanisms and treatments of spinal cord injury is essential for informed decisions concerning therapies.  In the coming years, many therapies are likely to be claimed beneficial for spinal cord injury.  Not all the therapies will be appropriate for everybody.  People must become expert on spinal cord injury and treatments.  You will not only help yourself but also become a better advocate for the cure by understanding what is needed.  There is a lot of learn and the earlier that you start, the better it will be.

Learning the normal anatomy and physiology of the spinal cord is the first step.  It would be useful for people to know the dermatomes and segmental representation of the muscle, how signals are conducted in the spinal cord, and how different sensations are represented in spinal cord tracts.  In addition to helping people evaluate their own recovery, it will allow them to understand their doctors and communicate.

Understanding the pathophysiology of spinal cord injury is the second step.  For example, it would be helpful for people to understand the mechanisms of spasticity and neuropathic pain, what causes syringomyelia, and autonomic dysreflexia.  Most people have little idea of why spinal cord injury causes all these problems.

Knowing what must be accomplished to restore function is the third step.  For example, it is important to understand regeneration.  A common misconception is that spinal nerve fibers or axons are like wires and that all one has to do is to reconnect the wires.  Axons are living parts of neurons.  When axons are injured, the part that has been separated from the cell dies.  Regeneration means regrowing axons back to their original connection.

Keeping up with the latest advances regarding therapies for spinal cord injury is important because our understanding of treatments is moving so quickly.  Stem cells are only the latest wave and it is important to know what they can and cannot do.  The cells alone are unlikely to facilitate regeneration and replace neurons.  They need to be applied in combination with growth factors, growth inhibitor blockers, and other treatments, as well as repetitive exercise to reverse learned non-use.

Education is the best guarantor of the cure.  If you don’t know the normal anatomy and physiology, don’t understand the pathophysiology and what must be done to restore function, and are not up on the latest information concerning therapies, you depend on the knowledge and understanding of others.  You don’t have to know and understand it all but the more you know, the more likely you will make the best decision.

Summary and Conclusions

What should a person do now to be ready for the cure?  First, people should prevent and reverse atrophy of muscle and bone.  Second, they should avoid surgical procedures that are irreversible.  Third, locomotor training can restore ambulation, particularly after incomplete injuries.  Fourth spinal cord stimulation may help locomotor training.  Fifth, the brain and spinal cord reorganizes after injury.  Finally education is important, not only because academic achievement improves quality of life after spinal cord injury but people also need to understand their injury and the therapies to make informed decisions.

Spasticity prevents muscle atrophy.  It is free exercise and people should avoid taking so much anti-spasticity drugs that their muscles are flaccid.  Standing exercises reflexes responsible for weight bearing and balance.  Electrical stimulation (FES) can reverse atrophy.  Normally, surface stimulation depends on muscle innervation to activate deeper muscles.  Higher intensity stimulation is required to activate deeper muscles and reverse atrophy of denervated muscles.

Osteoporosis or bone loss occurs after spinal cord injury.  Bone loss occurs primarily in parts of the body that are paralyzed.  Reinstatement of mechanical stress on bone, i.e. standing, is often not sufficient to rebuild bone.  Recent clinical trials suggest that the bisphosphonate alendronate prevents bone calcium loss but it is unclear that this drug restores bone strength.  Mechanical loading and FES-induced muscle activity probably should be combined with mechanical stress to rebuild bone.

Certain surgical procedures improve quality of life.  For example, tendon transfer can restore hand or arm function while tendon lengthening can reduce need for anti-spasticity medication.  The Mitrofanoff procedure allows people to catheterize themselves through their belly button.  Combined with augmentation, it reduces need for drugs to prevent bladder spasms.  A colostomy or sphincterotomy may reduce time and effort needed for bowel and bladder routines.  However, people should understand that these procedures are not easily reversible and they should discuss this with their surgeons.

Locomotor training can be beneficial, even in people with severe incomplete injuries who have not walked for many years after spinal cord injury.  A recent clinical trial showed that treadmill and overground training have similar benefits, restoring unassisted ambulation in over 90% of people during the first year after incomplete spinal cord injury.  Walking is programmed into the spinal cord and few spinal axons are required to initiate walking.  Spinal cord stimulation can reduce effort, speeds up, and increases efficiency of walking.

The brain and spinal cord undergoes extensive reorganization after spinal cord injury.  Spasticity, spasms, and neuropathic pain are a result of reorganization.  Exercise and training may reduce or alter spasticity and neuropathic pain.  Finally, education is important not only because formal educational achievement is one of the best predictor of quality of life after spinal cord injury but people need to learn as much as possible about their condition and the treatments that may help them.

References Cited

  1. Clarke JAL and Jackson JH (1867).  On a case of muscular atrophy, with disease of the spinal cord and medulla oblongata.  Printed by J.E. Adlard, London,.  {pp
  2. Boltshauser E, Isler W, Bucher HU and Friderich H (1981).  Permanent flaccid paraplegia in children with thoracic spinal cord injury.  Paraplegia 19: 227-34.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7290732
  3. Carter JG, Sokoll MD and Gergis SD (1981).  Effect of spinal cord transection on neuromuscular function in the rat.  Anesthesiology 55: 542-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7294409
  4. Scelsi R, Marchetti C, Poggi P, Lotta S and Lommi G (1982).  Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle.  Acta Neuropathol (Berl) 57: 243-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7136501
  5. Little JW and Halar EM (1985).  H-reflex changes following spinal cord injury.  Arch Phys Med Rehabil 66: 19-22.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3966862
  6. Boorman G, Becker WJ, Morrice BL and Lee RG (1992).  Modulation of the soleus H-reflex during pedalling in normal humans and in patients with spinal spasticity.  J Neurol Neurosurg Psychiatry 55: 1150-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1479394
  7. Robinson CJ, Kett NA and Bolam JM (1988).  Spasticity in spinal cord injured patients: 2. Initial measures and long-term effects of surface electrical stimulation.  Arch Phys Med Rehabil 69: 862-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3263102
  8. Little JW, Micklesen P, Umlauf R and Britell C (1989).  Lower extremity manifestations of spasticity in chronic spinal cord injury.  Am J Phys Med Rehabil 68: 32-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2917056
  9. Hinderer SR, Lehmann JF, Price R, White O, deLateur BJ and Deitz J (1990).  Spasticity in spinal cord injured persons: quantitative effects of baclofen and placebo treatments.  Am J Phys Med Rehabil 69: 311-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2264951
  10. Kofler M, Donovan WH, Loubser PG and Beric A (1992).  Effects of intrathecal baclofen on lumbosacral and cortical somatosensory evoked potentials.  Neurology 42: 864-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1565243
  11. Macdonell RA, Talalla A, Swash M and Grundy D (1989).  Intrathecal baclofen and the H-reflex.  J Neurol Neurosurg Psychiatry 52: 1110-2.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2795085
  12. Taube W, Gruber M and Gollhofer A (2008).  Spinal and supraspinal adaptations associated with balance training and their functional relevance.  Acta Physiol (Oxf) 193: 101-16.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18346210
  13. Mehrholz J, Kugler J and Pohl M (2008).  Locomotor training for walking after spinal cord injury.  Cochrane Database Syst Rev CD006676.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18425962
  14. King RB, Porter SL and Vertiz KB (2008).  Preventive skin care beliefs of people with spinal cord injury.  Rehabil Nurs 33: 154-62.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18686908
  15. Hoenig H, Murphy T, Galbraith J and Zolkewitz M (2001).  Case study to evaluate a standing table for managing constipation.  SCI Nurs 18: 74-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12035465
  16. Dunn RB, Walter JS, Lucero Y, Weaver F, Langbein E, Fehr L, Johnson P and Riedy L (1998).  Follow-up assessment of standing mobility device users.  Assist Technol 10: 84-93.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10339284
  17. Walter JS, Sola PG, Sacks J, Lucero Y, Langbein E and Weaver F (1999).  Indications for a home standing program for individuals with spinal cord injury.  J Spinal Cord Med 22: 152-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10685379
  18. Brown-Triolo DL, Roach MJ, Nelson K and Triolo RJ (2002).  Consumer perspectives on mobility: implications for neuroprosthesis design.  J Rehabil Res Dev 39: 659-69.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17943668
  19. Harrow JJ, Malassigne P, Nelson AL, Jensen RP, Amato M and Palacios PL (2007).  Design and evaluation of a stand-up motorized prone cart.  J Spinal Cord Med 30: 50-61.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17385270
  20. Yarkony GM, Jaeger RJ, Roth E, Kralj AR and Quintern J (1990).  Functional neuromuscular stimulation for standing after spinal cord injury.  Arch Phys Med Rehabil 71: 201-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2317138
  21. Gallien P, Brissot R, Eyssette M, Tell L, Barat M, Wiart L and Petit H (1995).  Restoration of gait by functional electrical stimulation for spinal cord injured patients.  Paraplegia 33: 660-4.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8584301
  22. Moynahan M, Mullin C, Cohn J, Burns CA, Halden EE, Triolo RJ and Betz RR (1996).  Home use of a functional electrical stimulation system for standing and mobility in adolescents with spinal cord injury.  Arch Phys Med Rehabil 77: 1005-13.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8857878
  23. Graupe D and Kohn KH (1998).  Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics.  Surg Neurol 50: 202-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9736079
  24. Faghri PD, Yount JP, Pesce WJ, Seetharama S and Votto JJ (2001).  Circulatory hypokinesis and functional electric stimulation during standing in persons with spinal cord injury.  Arch Phys Med Rehabil 82: 1587-95.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11689980
  25. Jacobs PL, Johnson B and Mahoney ET (2003).  Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia.  J Spinal Cord Med 26: 384-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14992341
  26. Mushahwar VK, Jacobs PL, Normann RA, Triolo RJ and Kleitman N (2007).  New functional electrical stimulation approaches to standing and walking.  J Neural Eng 4: S181-97.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17873417
  27. Graupe D, Cerrel-Bazo H, Kern H and Carraro U (2008).  Walking performance, medical outcomes and patient training in FES of innervated muscles for ambulation by thoracic-level complete paraplegics.  Neurol Res 30: 123-30.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18397602
  28. Kent HO (1992).  Vannini-Rizzoli stabilizing orthosis (boot): preliminary report on a new ambulatory aid for spinal cord injury.  Arch Phys Med Rehabil 73: 302-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1543438
  29. Middleton JW, Yeo JD, Blanch L, Vare V, Peterson K and Brigden K (1997).  Clinical evaluation of a new orthosis, the ‘walkabout’, for restoration of functional standing and short distance mobility in spinal paralysed individuals.  Spinal Cord 35: 574-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9300961
  30. Agarwal S, Triolo RJ, Kobetic R, Miller M, Bieri C, Kukke S, Rohde L and Davis JA, Jr. (2003).  Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury.  J Rehabil Res Dev 40: 241-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14582528
  31. Fisher LE, Miller ME, Nogan SJ, Davis JA, Anderson JS, Murray LM, Tyler DJ and Triolo RJ (2006).  Preliminary evaluation of a neural prosthesis for standing after spinal cord injury with four contact nerve-cuff electrodes for quadriceps stimulation.  Conf Proc IEEE Eng Med Biol Soc 1: 3592-5.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17947042
  32. Forrest GP, Smith TC, Triolo RJ, Gagnon JP, DiRisio D, Miller ME, Murray L, Davis JA and Iqbal A (2007).  Energy cost of the case Western reserve standing neuroprosthesis.  Arch Phys Med Rehabil 88: 1074-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17678672
  33. Dietz V (2008).  Body weight supported gait training: from laboratory to clinical setting.  Brain Res Bull 76: 459-63.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18534251
  34. Block JE, Steinbach LS, Friedlander AL, Steiger P, Ellis W, Morris JM and Genant HK (1989).  Electrically-stimulated muscle hypertrophy in paraplegia: assessment by quantitative CT.  J Comput Assist Tomogr 13: 852-4.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2789239
  35. Pollack SF, Axen K, Spielholz N, Levin N, Haas F and Ragnarsson KT (1989).  Aerobic training effects of electrically induced lower extremity exercises in spinal cord injured people.  Arch Phys Med Rehabil 70: 214-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2784311
  36. Arnold PB, McVey PP, Farrell WJ, Deurloo TM and Grasso AR (1992).  Functional electric stimulation: its efficacy and safety in improving pulmonary function and musculoskeletal fitness.  Arch Phys Med Rehabil 73: 665-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1622323
  37. Betz RR, Mulcahey MJ, Smith BT, Triolo RJ, Weiss AA, Moynahan M, Keith MW and Peckham PH (1992).  Bipolar latissimus dorsi transposition and functional neuromuscular stimulation to restore elbow flexion in an individual with C4 quadriplegia and C5 denervation.  J Am Paraplegia Soc 15: 220-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1431869
  38. Ditunno JF, Jr., Stover SL, Freed MM and Ahn JH (1992).  Motor recovery of the upper extremities in traumatic quadriplegia: a multicenter study.  Arch Phys Med Rehabil 73: 431-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1580769
  39. Granat M, Keating JF, Smith AC, Delargy M and Andrews BJ (1992).  The use of functional electrical stimulation to assist gait in patients with incomplete spinal cord injury.  Disabil Rehabil 14: 93-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1600188
  40. Ragnarsson KT (1992).  Functional electrical stimulation and suppression of spasticity following spinal cord injury.  Bull N Y Acad Med 68: 351-64.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1586870
  41. Kern H, Hofer C, Modlin M, Mayr W, Vindigni V, Zampieri S, Boncompagni S, Protasi F and Carraro U (2008).  Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI.  Spinal Cord 46: 293-304.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17955034
  42. Kern H, Hofer C, Strohhofer M, Mayr W, Richter W and Stohr H (1999).  Standing up with denervated muscles in humans using functional electrical stimulation.  Artif Organs 23: 447-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10378940
  43. Kern H, Boncompagni S, Rossini K, Mayr W, Fano G, Zanin ME, Podhorska-Okolow M, Protasi F and Carraro U (2004).  Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration?  J Neuropathol Exp Neurol 63: 919-31.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15453091
  44. Carraro U, Rossini K, Mayr W and Kern H (2005).  Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects.  Artif Organs 29: 187-91.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15725214
  45. Hofer C, Forstner C, Modlin M, Jager H, Mayr W and Kern H (2005).  In vivo assessment of conduction velocity and refractory period of denervated muscle fibers.  Artif Organs 29: 436-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15926977
  46. Kern H, Rossini K, Carraro U, Mayr W, Vogelauer M, Hoellwarth U and Hofer C (2005).  Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion.  J Rehabil Res Dev 42: 43-53.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16195962
  47. Modlin M, Forstner C, Hofer C, Mayr W, Richter W, Carraro U, Protasi F and Kern H (2005).  Electrical stimulation of denervated muscles: first results of a clinical study.  Artif Organs 29: 203-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15725217
  48. Giangregorio L and McCartney N (2006).  Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies.  J Spinal Cord Med 29: 489-500.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17274487
  49. Garland DE, Adkins RH and Stewart CA (2008).  Five-year longitudinal bone evaluations in individuals with chronic complete spinal cord injury.  J Spinal Cord Med 31: 543-50.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19086712
  50. Reiter AL, Volk A, Vollmar J, Fromm B and Gerner HJ (2007).  Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury.  Eur Spine J 16: 771-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16830131
  51. Biering-Sorensen F, Bohr HH and Schaadt OP (1990).  Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury.  Eur J Clin Invest 20: 330-5.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2114994
  52. Frotzler A, Berger M, Knecht H and Eser P (2008).  Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).  Bone 43: 549-55.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18567554
  53. Maimoun L, Lumbroso S, Paris F, Couret I, Peruchon E, Rouays-Mabit E, Rossi M, Leroux JL and Sultan C (2006).  The role of androgens or growth factors in the bone resorption process in recent spinal cord injured patients: a cross-sectional study.  Spinal Cord  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16568142
  54. Dudley-Javoroski S and Shields RK (2008).  Dose Estimation and Surveillance of Mechanical Loading Interventions for Bone Loss After Spinal Cord Injury.  Phys Ther  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18202080
  55. Shields RK, Dudley-Javoroski S and Law LA (2006).  Electrically induced muscle contractions influence bone density decline after spinal cord injury.  Spine 31: 548-53.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16508550
  56. Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C and Marshall R (2007).  Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss.  Spinal Cord 45: 78-85.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16636686
  57. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC and Liberman UA (2004).  Ten years’ experience with alendronate for osteoporosis in postmenopausal women.  N Engl J Med 350: 1189-99.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15028823
  58. Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P and Marshall K (2007).  Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study.  J Clin Endocrinol Metab 92: 1385-90.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17227802
  59. Moran de Brito CM, Battistella LR, Saito ET and Sakamoto H (2005).  Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study.  Spinal Cord 43: 341-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15700052
  60. Sniger W and Garshick E (2002).  Alendronate increases bone density in chronic spinal cord injury: a case report.  Arch Phys Med Rehabil 83: 139-40.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11782844
  61. Lyles KW (1999).  Management of patients with vertebral compression fractures.  Pharmacotherapy 19: 21S-24S.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9915558
  62. Harris ST, Gertz BJ, Genant HK, Eyre DR, Survill TT, Ventura JN, DeBrock J, Ricerca E and Chesnut CH, 3rd (1993).  The effect of short term treatment with alendronate on vertebral density and biochemical markers of bone remodeling in early postmenopausal women.  J Clin Endocrinol Metab 76: 1399-406.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8501142
  63. Atalay A and Turhan N (2008).  Treatment of immobilization hypercalciuria using weekly alendronate in two quadriplegic patients.  Int Urol Nephrol 40: 259-61.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17934791
  64. Freehafer AA and Mast WA (1965).  Lower Extremity Fractures in Patients with Spinal-Cord Injury.  J Bone Joint Surg Am 47: 683-94.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14299662
  65. Rink P and Miller F (1990).  Hip instability in spinal cord injury patients.  J Pediatr Orthop 10: 583-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2394810
  66. Dionyssiotis Y, Trovas G, Galanos A, Raptou P, Papaioannou N, Papagelopoulos P, Petropoulou K and Lyritis GP (2007).  Bone loss and mechanical properties of tibia in spinal cord injured men.  J Musculoskelet Neuronal Interact 7: 62-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17396008
  67. Maimoun L, Fattal C, Micallef JP, Peruchon E and Rabischong P (2006).  Bone loss in spinal cord-injured patients: from physiopathology to therapy.  Spinal Cord 44: 203-10.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16158075
  68. Maimoun L, Couret I, Mariano-Goulart D, Dupuy AM, Micallef JP, Peruchon E, Ohanna F, Cristol JP, Rossi M and Leroux JL (2005).  Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury.  Calcif Tissue Int 76: 404-11.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15812577
  69. Smith JL, Edgerton VR, Eldred E and Zernicke RF (1983).  The chronic spinalized cat: a model for neuromuscular plasticity.  Birth Defects Orig Artic Ser 19: 357-73.
  70. Barbeau H and Rossignol S (1987).  Recovery of locomotion after chronic spinalization in the adult cat.  Brain Res 412: 84-95.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3607464
  71. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP and de Leon R (1992).  Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.  J Neurotrauma 9 Suppl 1: S119-28.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1588602
  72. Barbeau H, Chau C and Rossignol S (1993).  Noradrenergic agonists and locomotor training affect locomotor recovery after cord transection in adult cats.  Brain Res Bull 30: 387-93.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8457888
  73. Barbeau H and Rossignol S (1994).  Enhancement of locomotor recovery following spinal cord injury.  Curr Opin Neurol 7: 517-24.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7866583
  74. Harkema SJ (2001).  Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.  Neuroscientist 7: 455-68.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11597104
  75. Hodgson JA, Roy RR, de Leon R, Dobkin B and Edgerton VR (1994).  Can the mammalian lumbar spinal cord learn a motor task?  Med Sci Sports Exerc 26: 1491-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7869884
  76. Rossignol S (2000).  Locomotion and its recovery after spinal injury.  Curr Opin Neurobiol 10: 708-16.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11240279
  77. de Leon RD, Hodgson JA, Roy RR and Edgerton VR (1998).  Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.  J Neurophysiol 79: 1329-40.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9497414
  78. Muir GD and Steeves JD (1995).  Phasic cutaneous input facilitates locomotor recovery after incomplete spinal injury in the chick.  J Neurophysiol 74: 358-68.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7472337
  79. De Leon RD, Hodgson JA, Roy RR and Edgerton VR (1999).  Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training.  J Neurophysiol 81: 85-94.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9914269
  80. Ribotta MG, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A and Orsal D (2000).  Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level.  J Neurosci 20: 5144-52.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10864971
  81. Fouad K, Metz GA, Merkler D, Dietz V and Schwab ME (2000).  Treadmill training in incomplete spinal cord injured rats.  Behav Brain Res 115: 107-13.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10996413
  82. Inman CG (2001).  Long term effects of locomotor training in spinal humans.  J Neurol Neurosurg Psychiatry 71: 6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11413253
  83. Wernig A and Muller S (1992).  Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries.  Paraplegia 30: 229-38.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1625890
  84. Wernig A, Muller S, Nanassy A and Cagol E (1995).  Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons.  Eur J Neurosci 7: 823-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7620630
  85. Wernig A, Nanassy A and Muller S (1998).  Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies.  Spinal Cord 36: 744-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9848480
  86. Dobkin BH, Harkema S, Requejo P and Edgerton VR (1995).  Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.  J Neurol Rehabil 9: 183-90.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11539274
  87. Behrman AL and Harkema SJ (2000).  Locomotor training after human spinal cord injury: a series of case studies.  Phys Ther 80: 688-700.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10869131
  88. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M and Scott M (2006).  Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI.  Neurology 66: 484-93.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16505299
  89. Duysens J and Van de Crommert HW (1998).  Neural control of locomotion; The central pattern generator from cats to humans.  Gait Posture 7: 131-141.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10200383
  90. Van de Crommert HW, Mulder T and Duysens J (1998).  Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training.  Gait Posture 7: 251-263.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10200392
  91. Grillner S, Ekeberg, El Manira A, Lansner A, Parker D, Tegner J and Wallen P (1998).  Intrinsic function of a neuronal network – a vertebrate central pattern generator.  Brain Res Brain Res Rev 26: 184-97.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9651523
  92. Barbeau H, McCrea DA, O’Donovan MJ, Rossignol S, Grill WM and Lemay MA (1999).  Tapping into spinal circuits to restore motor function.  Brain Res Brain Res Rev 30: 27-51.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10407124
  93. Hadi B, Zhang YP, Burke DA, Shields CB and Magnuson DS (2000).  Lasting paraplegia caused by loss of lumbar spinal cord interneurons in rats: no direct correlation with motor neuron loss.  J Neurosurg 93: 266-75.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11012058
  94. Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB and Guertin PA (2006).  Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice.  Eur J Neurosci 24: 535-46.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16836640
  95. Yakovenko S, Kowalczewski J and Prochazka A (2007).  Intraspinal stimulation caudal to spinal cord transections in rats. Testing the propriospinal hypothesis.  J Neurophysiol 97: 2570-4.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17215510
  96. Dimitrijevic MR, Gerasimenko Y and Pinter MM (1998).  Evidence for a spinal central pattern generator in humans.  Ann N Y Acad Sci 860: 360-76.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9928325
  97. Pinter MM and Dimitrijevic MR (1999).  Gait after spinal cord injury and the central pattern generator for locomotion.  Spinal Cord 37: 531-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10455527
  98. Murg M, Binder H and Dimitrijevic MR (2000).  Epidural electric stimulation of posterior structures of the human lumbar spinal cord: 1. muscle twitches – a functional method to define the site of stimulation.  Spinal Cord 38: 394-402.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10962598
  99. Pinter MM, Gerstenbrand F and Dimitrijevic MR (2000).  Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity.  Spinal Cord 38: 524-31.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11035472
  100. Jilge B, Minassian K, Rattay F, Pinter MM, Gerstenbrand F, Binder H and Dimitrijevic MR (2004).  Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation.  Exp Brain Res 154: 308-26.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14586532
  101. Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F and Dimitrijevic MR (2004).  Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials.  Spinal Cord  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15124000
  102. Dimitrijevic MR, Persy I, Forstner C, Kern H and Dimitrijevic MM (2005).  Motor control in the human spinal cord.  Artif Organs 29: 216-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15725220
  103. Kern H, McKay WB, Dimitrijevic MM and Dimitrijevic MR (2005).  Motor control in the human spinal cord and the repair of cord function.  Curr Pharm Des 11: 1429-39.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15853673
  104. Minassian K, Persy I, Rattay F, Pinter MM, Kern H and Dimitrijevic MR (2007).  Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity.  Hum Mov Sci 26: 275-95.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17343947
  105. Barriere G, Leblond H, Provencher J and Rossignol S (2008).  Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries.  J Neurosci 28: 3976-87.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18400897
  106. Herman R, He J, D’Luzansky S, Willis W and Dilli S (2002).  Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured.  Spinal Cord 40: 65-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11926417
  107. Carhart MR, He J, Herman R, D’Luzansky S and Willis WT (2004).  Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury.  IEEE Trans Neural Syst Rehabil Eng 12: 32-42.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15068185
  108. Huang H, He J, Herman R and Carhart MR (2006).  Modulation effects of epidural spinal cord stimulation on muscle activities during walking.  IEEE Trans Neural Syst Rehabil Eng 14: 14-23.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16562627
  109. Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F and Dimitrijevic MR (2008).  Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects.  Artif Organs 32: 644-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18782137
  110. de l’Etoile SK (2008).  The effect of rhythmic auditory stimulation on the gait parameters of patients with incomplete spinal cord injury: an exploratory pilot study.  Int J Rehabil Res 31: 155-7.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18467930
  111. Murray M and Goldberger ME (1974).  Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal.  J. Comp. Neurol. 158: 19-36.
  112. Goldberger ME and Murray M (1974).  Restitution of function and collateral sprouting in the cat spinal cord: The deafferented animal.  J. Comp. Neurol. 158: 37-54.
  113. Goldberger ME (1974).  Functional recovery after lesions of the nervous system. IV. Structural correlates of recovery in adult subjects. Recovery of function and collateral sprouting in cat spinal cord.  Neurosci Res Program Bull 12: 235-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4846478
  114. Goldberger ME (1965).  The extrapyramidal systems of the spinal cord: Results of combined spinal and cortical lesions in the macaque.  J. Comp. Neurol. 124: 161-174.
  115. Jain N, Florence SL, Qi HX and Kaas JH (2000).  Growth of new brainstem connections in adult monkeys with massive sensory loss.  Proc Natl Acad Sci U S A 97: 5546-50.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10779564
  116. Kaas JH, Qi HX, Burish MJ, Gharbawie OA, Onifer SM and Massey JM (2008).  Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord.  Exp Neurol 209: 407-16.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17692844
  117. Hoschouer EL, Yin FQ and Jakeman LB (2008).  L1 cell adhesion molecule is essential for the maintenance of hyperalgesia after spinal cord injury.  Exp Neurol  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19059398
  118. Guleria S, Gupta RK, Saksena S, Chandra A, Srivastava RN, Husain M, Rathore R and Narayana PA (2008).  Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging.  J Neurosci Res 86: 2271-80.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18335542
  119. Topka H, Cohen LG, Cole RA and Hallett M (1991).  Reorganization of corticospinal pathways following spinal cord injury.  Neurology 41: 1276-83.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1866018
  120. Hayes KC, Allatt RD, Wolfe DL, Kasai T and Hsieh J (1992).  Reinforcement of subliminal flexion reflexes by transcranial magnetic stimulation of motor cortex in subjects with spinal cord injury.  Electroencephalogr Clin Neurophysiol 85: 102-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1373362
  121. Endo T, Spenger C, Westman E, Tominaga T and Olson L (2008).  Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI.  Exp Neurol 209: 155-60.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17988666
  122. Kumru H, Vidal J, Kofler M, Benito J, Garcia A and Valls-Sole J (2008).  Exaggerated auditory startle responses in patients with spinal cord injury.  J Neurol 255: 703-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18286318
  123. Han DS, Li CM and Chang CW (2008).  Reorganization of the cortico-spinal pathway in patients with chronic complete thoracic spinal cord injury: a study of motor evoked potentials.  J Rehabil Med 40: 208-12.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18292923
  124. Aisen ML, Brown W and Rubin M (1992).  Electrophysiologic changes in lumbar spinal cord after cervical cord injury.  Neurology 42: 623-6.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1549226
  125. Beric A and Light JK (1992).  Function of the conus medullaris and cauda equina in the early period following spinal cord injury and the relationship to recovery of detrusor function.  J Urol 148: 1845-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1433618
  126. Light JK and Beric A (1992).  Detrusor function in suprasacral spinal cord injuries.  J Urol 148: 355-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1635134
  127. Shefner JM, Berman SA, Sarkarati M and Young RR (1992).  Recurrent inhibition is increased in patients with spinal cord injury.  Neurology 42: 2162-8.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1436529
  128. Konya D, Liao WL, Choi H, Yu D, Woodard MC, Newton KM, King AM, Pamir NM, Black PM, Frontera WR, Sabharwal S and Teng YD (2008).  Functional recovery in T13-L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity.  Regen Med 3: 309-27.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18462055
  129. Wang LH, Lu YJ, Bao L and Zhang X (2007).  Peripheral nerve injury induces reorganization of galanin-containing afferents in the superficial dorsal horn of monkey spinal cord.  Eur J Neurosci 25: 1087-96.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17331205
  130. Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR and Sofroniew MV (2008).  Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury.  Nat Med 14: 69-74.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18157143
  131. Smith BM, LaVela SL and Weaver FM (2008).  Health-related quality of life for veterans with spinal cord injury.  Spinal Cord 46: 507-12.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18256674
  132. Drainoni ML, Houlihan B, Williams S, Vedrani M, Esch D, Lee-Hood E and Weiner C (2004).  Patterns of Internet use by persons with spinal cord injuries and relationship to health-related quality of life.  Arch Phys Med Rehabil 85: 1872-9.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15520984
  133. Dvorak MF, Fisher CG, Hoekema J, Boyd M, Noonan V, Wing PC and Kwon BK (2005).  Factors predicting motor recovery and functional outcome after traumatic central cord syndrome: a long-term follow-up.  Spine 30: 2303-11.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16227894
  134. Holtslag HR, van Beeck EF, Lindeman E and Leenen LP (2007).  Determinants of long-term functional consequences after major trauma.  J Trauma 62: 919-27.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17426549
  135. Valtonen K, Karlsson AK, Alaranta H and Viikari-Juntura E (2006).  Work participation among persons with traumatic spinal cord injury and meningomyelocele1.  J Rehabil Med 38: 192-200.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16702087
  136. Meerding WJ, Looman CW, Essink-Bot ML, Toet H, Mulder S and van Beeck EF (2004).  Distribution and determinants of health and work status in a comprehensive population of injury patients.  J Trauma 56: 150-61.  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14749582

10 Responses to “FAQ #4: What Can I Do Now to Be Ready for the Cure?”

  1. Dennis Says:

    Hi Dr. Young,

    I have L2 injury and live near Stanford University. Where can I get locomotor training and spinal cord stimulation?


  2. Wise Young Says:

    I am not sure that Stanford University has a strong locomotor training program (sorry if I am mistaken about this, especially since I went there for medical school). The best locomotor programs are in South California, at UCLA. Bruce Dobkins and Reggie Edgarton are two of the leading locomotor researchers and they are both at UCLA. There is a private organization called Project Walk in San Diego that offers a variety of exercises for people with spinal cord injury.

  3. Dennis Says:

    Dr. Young,

    I wonder in my area which doctor you would recommend for L2 injury.

    Also given that CPG is located in L2, I am wondering if the spinal cord stimulation of my injured L2 might not be effective although my right leg’s motor functions have largely returned but left leg’s motor functions have not.


  4. Dennis Says:

    Dr. Young,

    Yes, I have L2 vertebral level injury (cauda equina).

    I have the following 3 questions:

    1. Why would that explain the fact that I have unilateral return in motor functions?

    2. Given that CPG is located in L2, is it true that the spinal cord stimulation of my injured L2 might not be effective?

    3. Do you recommend any doctor in Silicon Valley that would treat my injury?

    Thanks a million.

  5. Wise Young Says:


    Please read the classification article. If you go to http://carecure.org and search for my posts on cauda equina syndrome, you will find detailed explanations of both the anatomy and consequences of cauda equina injuries.

    Based on what you have described to date, you have a cauda equina injury and probably don’t have a spinal cord injury. The cauda equina are spinal cord roots. The L2 spinal cord is located under the T12 vertebral segment and should be ok.

    In my opinion, you need a clear diagnosis of your injury. It is not appropriate to do diagnoses over internet. Stanford has a strong spinal cord injury program and I would recommend that you see Graham Creasey there. http://neurosurgery.stanford.edu/about/090508.html



  6. 7 Diet Secrets of the Stars | Health JaneSeek Says:

    […] FAQ #4: What Can I Do Now to Be Ready for the Cure? […]

  7. Kim Young Says:

    My son is 23yr old with c6 sci complete injury form July 2007. He is doing SCI recovery training including walking with weight support system on the treadmill and over ground on the large walker 2-3 days/week. I am wondering if this is enough and what he should be doing in addition. I have been researching the lokomat and that system looks more advanced than what we have here. Also he has recurring bladder stones( he has an s/p catheter) and his urologist is recommending mitrofanoff with bladder augmentation and we would like to get a second opinion- any suggestions of who to go to in Michigan or near by midwest? Thank you so much

  8. Wise Young Says:

    Dear Kim, I have written answer to your question on CareCure:

  9. Monica elias Says:

    Dear doctor young
    My daughter has a c-1 internal decaption only had a 1%chance of survival along with a tbi and many many broken bones. I was told she would be lucky if she survived the nite never mind what she is doing now. I was told she wouldn’t breath on her own,or ever walk again. She has had many issues but she is a vibrant smart girl walking and breathing on her own. It’s been five years and she is working out like crazy in the gym,our last resort for one of her problems is her walking she uses a cane,recently we have gone to moss institute rehab in Philadelphia pa,we were there because that was our last resort to help her walk better. We are loking into tendon lengthing until I came across your blog here. Not many people survive her injury so I find it hard to get info on it. Is there any info you cane give me to help my daughter get her balance back. I’m sure she would be a perfect person for some of your studies. There is so much about her that doctors don’t understand how she is doing it. There is so much to tell on her,that I could write you a book. If more info is needed from me I wouldn’t mind you calling me as it’s very stressful talking to doctors and trying everything and not getting answers. I’m just a mother trying everything I can to help my daughter live a good life. Everyone who meets her sees she is a wonderful caring loving generous person I want the best for her she is our life.

    Thank you Monica

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: